清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Ras superfamily at a glance

生物 计算生物学 进化生物学 超家族 基因 遗传学
作者
Krister Wennerberg,Kent L. Rossman,Channing J. Der
出处
期刊:Journal of Cell Science [The Company of Biologists]
卷期号:118 (5): 843-846 被引量:1298
标识
DOI:10.1242/jcs.01660
摘要

The Ras superfamily of small guanosine triphosphatases (GTPases) comprise over 150 human members (Table S1 in supplementary material), with evolutionarily conserved orthologs found in Drosophila, C. elegans, S. cerevisiae, S. pombe, Dictyostelium and plants (Colicelli, 2004). The Ras oncogene proteins are the founding members of this family, which is divided into five major branches on the basis of sequence (Fig. S1 in supplementary material) and functional similarities: Ras, Rho, Rab, Ran and Arf. Small GTPases share a common biochemical mechanism and act as binary molecular switches (Vetter and Wittinghofer, 2001). Although similar to the heterotrimeric G protein α subunits in biochemistry and function, Ras family proteins function as monomeric G proteins. Variations in structure (Biou and Cherfils, 2004), post-translational modifications that dictate specific subcellular locations and the proteins that serve as their regulators and effectors allow these small GTPases to function as sophisticated modulators of a remarkably complex and diverse range of cellular processes. Here, we present the basic structural features of Ras proteins, with respect to specific Ras sequences, to highlight the general properties of this family of proteins and discuss features that distinguishes the various branches of the superfamily from Ras.FIG1Ras superfamily GTPases function as GDP/GTP-regulated molecular switches (Vetter and Wittinghofer, 2001). They share a set of conserved G box GDP/GTP-binding motif elements beginning at the N-terminus: G1, GXXXXGKS/T; G2, T; G3, DXXGQ/H/T; G4, T/NKXD; and G5, C/SAK/L/T (Bourne et al., 1991) (Fig. S1 in supplementary material). Together, these elements make up an ∼20 kDa G domain (Ras residues 5-166) that has a conserved structure and biochemistry shared by all Ras superfamily proteins, as well as Gα and other GTPases.Small GTPases exhibit high-affinity binding for GDP and GTP, and possess low intrinsic GTP hydrolysis and GDP/GTP exchange activities. GDP/GTP cycling is controlled by two main classes of regulatory protein. Guanine-nucleotide-exchange factors (GEFs) promote formation of the active, GTP-bound form (Schmidt and Hall, 2002), whereas GTPase-activating proteins (GAPs) accelerate the intrinsic GTPase activity to promote formation of the inactive GDP-bound form (Bernards and Settleman, 2004). GTPases within a branch use shared and distinct GAPs and GEFs. GTPases in different branches exhibit structurally distinct but mechanistically similar GAPs and GEFs. The two nucleotide-bound states have similar conformations but these have pronounced differences corresponding to the switch I (Ras residues 30-38) and switch II (59-67) regions: the GTP-bound conformation possessing high affinity for effector targets (Bishop and Hall, 2000; Repasky et al., 2004). It is mainly through the conformational changes in these two switches that regulatory proteins and effectors `sense' the nucleotide status of the small GTPases. Arf proteins contain additional N-terminal sequences, whereas Ran has additional C-terminal sequences that undergo significant conformational changes during GDP/GTP cycling. Although the GTP-bound form is the active form for all Ras superfamily GTPases, the cycling between the GDP-bound and GTP-bound states, in which distinct functions are associated with each nucleotide-bound form, is also critical for the activities of Rab, Arf and Ran GTPases. The core effector domain (Ras residues 32-40) includes the switch I domain and is critical for direct association with effectors (Herrmann, 2003).A second important biochemical feature of a majority of Ras superfamily proteins is their post-translational modification by lipids. The majority of Ras and Rho family proteins terminate with a C-terminal CAAX (C=Cys, A=aliphatic, X=any amino acid) tetrapeptide sequence (Cox and Der, 2002). This motif, when coupled together with residues immediately upstream (e.g. cysteine residues modified by the fatty acid palmitate), comprises the membrane-targeting sequences that dictate interactions with distinct membrane compartments and subcellular locations. The CAAX motif is the recognition sequence for farnesyltransferase and geranylgeranyltransferase I, which catalyze the covalent addition of a farnesyl or geranylgeranyl isoprenoid, respectively, to the cysteine residue of the tetrapeptide motif. Rab family proteins terminate in a distinct set of cysteine-containing C-terminal motifs (CC, CXC, CCX, CCXX, or CCXXX) that are similarly modified by geranylgeranyltransferase II, which also attaches geranylgeranyl groups. Some members of the Arf family are modified at their N-termini by a myristate fatty acid. These modifications are essential for facilitating membrane association and subcellular localization critical for biological activities. Rho and Rab GTPases are regulated by a third class of proteins, guanine nucleotide dissociation inhibitors (GDIs), which mask the prenyl modification and promote cytosolic sequestration of these GTPases (Seabra and Wasmeier, 2004). Some Ras superfamily members do not appear to be modified by lipids, but still associate with membranes (e.g. Rit, RhoBTB, Miro and Sar1). Others (e.g. Ran and Rerg) are not lipid modified and are not bound to membranes.The Ras superfamily has traditionally been divided into five different major branches. The classification of some less-studied proteins into these major subfamilies is arbitrary, and sequence comparisons of the G domains suggest that they may define distinct subfamilies. In the absence of any functional data, a definitive classification of these GTPases is not yet possible. Here, we group the proteins that, on the basis of structure, function or both, clearly belong to a specific subfamily. In cases where neither structural nor functional data support putting a protein in one of the major subfamilies, we leave the protein as `Unclassified' even though some of these proteins have previously been labeled as belonging to a certain subfamily. In the human genome, there are also a large number of Ras superfamily pseudogenes. We have chosen not to include gene sequences from databases where no evidence of transcription has been found. Furthermore, in addition to the proteins listed here, there are many genes that have regions predicted to encode sequences similar to parts of a small GTPase domain, but we have chosen only to include proteins that contain complete Ras-like GTPase domains.The Ras sarcoma (Ras) oncoproteins are the founding members of the Ras family (36 members) and have been the subject of intense research scrutiny, in large part because of their critical roles in human oncogenesis (Repasky et al., 2004). Ras proteins serve as signaling nodes activated in response to diverse extracellular stimuli. Activated Ras interacts with multiple, catalytically distinct downstream effectors, which regulate cytoplasmic signaling networks that control gene expression and regulation of cell proliferation, differentiation, and survival.The best characterized Ras signaling pathway is activation of Ras by the epidermal growth factor receptor tyrosine kinase through the RasGEF Sos (Repasky et al., 2004). Activated Ras binds to and promotes the translocation of the Raf serine/threonine kinase to the plasma membrane, where additional phosphorylation events promote full Raf kinase activation. Raf phosphorylates and activates the MEK1/2 dual specificity protein kinase, which phosphorylates and activates the ERK1/2 mitogen-activated protein (MAP) kinase. Activated ERK translocates to the nucleus, where it phosphorylates Ets-family transcription factors, which in turn activate Ets-responsive promoters.Other Ras family proteins, including Rap, R-Ras, Ral and Rheb proteins, also regulate signaling networks. Finally, although biochemically similar to Ras, several Ras family proteins appear to act as tumor suppressors, rather than as oncogenes (e.g. Rerg, Noey2 and D-Ras), in cancer development (Colicelli, 2004).Like Ras, Ras homologous (Rho) proteins also serve as key regulators of extracellular-stimulus-mediated signaling networks that regulate actin organization, cell cycle progression and gene expression (Etienne-Manneville and Hall, 2002). Twenty members have been identified, RhoA, Rac1 and Cdc42 being the best studied. Rho GTPases are key regulators of actin reorganization. RhoA promotes actin stress fiber formation and focal adhesion assembly; Rac1 promotes lamellipodium formation and membrane ruffling; and Cdc42 promotes actin microspikes and filopodium formation. Consequently, Rho GTPases have been implicated in the regulation of cell polarity, cell movement, cell shape, and cell-cell and cell-matrix interactions, as well as in regulation of endocytosis and exocytosis (Ridley, 2001). Reflecting their involvement in such a diversity of cellular processes, RhoA, Rac1 and Cdc42 proteins are each regulated by a surprising diversity of GEFs and GAPs (Schmidt and Hall, 2002; Moon and Zheng, 2003) and utilize a similarly diverse set of downstream effectors (Bishop and Hall, 2000). Actin reorganization functions have also been observed for other Rho family GTPases, in particular Rnd proteins, which antagonize RhoA.Although the Miro proteins were first described as Rho proteins, these atypical GTPases instead appear to form their own subgroup of the Ras superfamily (Wennerberg and Der, 2004). In addition to their N-terminal GTPase domain, they contain EF-hand domains and one C-terminal GTPase-like domain. They lack the insert domain that is characteristic of Rho GTPases (Fig. S1 in supplementary material). The Miro proteins do not regulate the cytoskeleton; instead they are localized to mitochondria and regulate the integrity of these cellular compartments.First described as Ras-like proteins in brain (Rab), Rab proteins comprise the largest branch of the superfamily, with 61 members (Pereira-Leal and Seabra, 2001). Rab GTPases are regulators of intracellular vesicular transport and the trafficking of proteins between different organelles of the endocytic and secretory pathways (Zerial and McBride, 2001). Rab proteins facilitate vesicle formation and budding from the donor compartment, transport to the acceptor compartment, and vesicle fusion and release of the vesicle content into the acceptor compartment.Rab proteins localize to specific intracellular compartments consistent with their function in distinct vesicular transport processes (Zerial and McBride, 2001). This localization is dependent on prenylation, and specificity is dictated by divergent C-terminal sequences. For example, Rab1 is located in the intermediate compartment of the cis-Golgi network and is involved in ER-to-Golgi transport. By contrast, Rab5 is located in early endosomes and regulates clathrin-coated-vesicle-mediated transport from the plasma membrane to early endosomes. Similar distinct intracellular locations and roles in vesicular transport have been established for other Rab members.The Ras-like nuclear (Ran) protein is the most abundant small GTPase in the cell and is best known for its function in nucleocytoplasmic transport of both RNA and proteins (Weis, 2003). Although related to the Rab proteins in sequence, it has features that distinguish it. Unlike other small GTPases, Ran function is dependent on a spatial gradient of the GTP-bound form of Ran. There is a single human Ran protein that is regulated by a Ran-specific nuclear GEF and cytoplasmic GAP activities. This results in a high concentration of Ran-GTP in the nucleus, which facilitates the directionality of nuclear import and export. Nuclear Ran-GTP interacts with importin to promote cargo release, and with exportin-complexed cargo, to facilitate nuclear import and export of cargo, respectively. By a similar mechanism, Ran GDP/GTP cycling also regulates mitotic spindle assembly, DNA replication and nuclear envelope assembly (Li et al., 2003).Like the Rab proteins, the ADP-ribosylation factor (Arf) family proteins are involved in regulation of vesicular transport, Arf1 being the best characterized (Memon, 2004). Arf GDP/GTP cycling is regulated by distinct GEFs and GAPs (Nie et al., 2003). Arf-GTP, the active form, interacts with effectors including vesicle coat proteins. Conformational differences between the two nucleotide-bound forms include not only the switch I and II regions, but also changes in the N-terminal region that allow the myristate group to interact with membranes in their GTP-bound state (Pasqualato et al., 2002).Arf1 regulates the formation of vesicle coats at different steps in the exocytic and endocytic pathways (Nie et al., 2003; Memon, 2004). GTP- and donor-membrane-bound Arf associates with and activates coat proteins. The Arf–coat-protein complex then facilitates cargo sorting and vesicle formation and release. GAP-mediated formation of Arf-GDP is required for dissociation of the Arf–coat-protein complex and subsequent vesicle fusion with acceptor membranes. In contrast to Rab proteins, which function at single steps in membrane trafficking, Arf proteins can act at multiple steps. For example, Arf1 controls the formation of coat protein I (COPI)-coated vesicles involved in retrograde transport between the Golgi and ER, of clathrin/adapter protein 1 (AP1)-complex-associated vesicles at the trans-Golgi network (TGN) and on immature secretory vesicles, and of AP3-containing endosomes. Arf6 is functionally distinct from Arf1 and can regulate actin organization as well as endocytosis. Regulation and function of Sar1 is similar to that of Arf1, controlling the assembly of the COPII-coated vesicles at the ER. Arl1 also functions in membrane trafficking. Other family members exhibit different or poorly characterized cellular functions.The complex modes of regulation of Ras superfamily small GTPases facilitate their key involvement in an amazingly diverse spectrum of biochemical and biological processes. The extent of this superfamily, when combined with Gα subunits and up to 50 other human GTPases (Colicelli, 2004), reveal the versatile role of GTPase switches in the control of cellular processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莎莎完成签到 ,获得积分10
34秒前
小二郎应助北雨采纳,获得10
42秒前
陈少华完成签到 ,获得积分10
51秒前
77发布了新的文献求助10
1分钟前
烟花应助kk采纳,获得10
1分钟前
1分钟前
婉莹完成签到 ,获得积分0
1分钟前
kk发布了新的文献求助10
1分钟前
1分钟前
追忆发布了新的文献求助10
1分钟前
通科研完成签到 ,获得积分10
2分钟前
田様应助追忆采纳,获得10
2分钟前
小小果妈完成签到 ,获得积分10
3分钟前
xz完成签到 ,获得积分10
3分钟前
3分钟前
123321321345发布了新的文献求助10
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
cyskdsn完成签到 ,获得积分10
4分钟前
4分钟前
北雨发布了新的文献求助10
4分钟前
5分钟前
123321321345完成签到,获得积分10
5分钟前
追忆发布了新的文献求助10
5分钟前
鬼见愁应助科研通管家采纳,获得10
5分钟前
既然寄了,那就开摆完成签到 ,获得积分10
5分钟前
追忆完成签到,获得积分20
5分钟前
热情映秋发布了新的文献求助10
6分钟前
香蕉觅云应助热情映秋采纳,获得30
6分钟前
6分钟前
77发布了新的文献求助10
6分钟前
经管研究生完成签到 ,获得积分10
7分钟前
123完成签到 ,获得积分10
7分钟前
77完成签到,获得积分10
8分钟前
初心路完成签到 ,获得积分10
8分钟前
刘刘完成签到 ,获得积分10
9分钟前
talksilence完成签到,获得积分10
10分钟前
尹宁完成签到,获得积分10
11分钟前
12分钟前
一个橡果发布了新的文献求助10
12分钟前
斯文败类应助Claudia采纳,获得10
14分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207791
求助须知:如何正确求助?哪些是违规求助? 2857066
关于积分的说明 8108585
捐赠科研通 2522621
什么是DOI,文献DOI怎么找? 1356017
科研通“疑难数据库(出版商)”最低求助积分说明 642282
邀请新用户注册赠送积分活动 613674