Metabolomic study for diagnostic model of oesophageal cancer using gas chromatography/mass spectrometry

化学 代谢组学 色谱法 质谱法 气相色谱-质谱法 气相色谱法
作者
Hao Wu,Rui Xue,Chunlai Lu,Chunhui Deng,Taotao Liu,Huazong Zeng,Qun Wang,Xizhong Shen
出处
期刊:Journal of Chromatography B [Elsevier BV]
卷期号:877 (27): 3111-3117 被引量:91
标识
DOI:10.1016/j.jchromb.2009.07.039
摘要

The prognosis for oesophageal cancer is poor. Attempts have been made for the identification of biomarkers for early diagnosis. Metabolomic panel has been evaluated as potential candidate biomarkers. With gas chromatography/mass spectrometry (GC/MS) as a sensitive modality for metabolomics, various tissue metabolites can be detected and identified. We hypothesized that tissue metabolomic biomarkers may be identifiable and diagnostically useful for oesophageal cancer. We present a metabolomic method of chemical derivatization followed by GC/MS to analyze the metabolic difference in biopsied specimens between oesophageal cancer and corresponding normal mucosae obtained from 20 oesophageal cancer patients. The GC/MS data was analyzed using a two sample t-test to explore the potential metabolic biomarkers for oesophageal cancer. A diagnostic model was constructed to discriminate normal from malignant samples, using principal component analysis (PCA) and receiver–operating characteristic (ROC) curves. t-Test showed a total of 20 marker metabolites detected were found to be different with statistical significance (P < 0.05). The multivariate logistic analysis yielded a complete distinction between the two groups. The diagnostic model could discriminate tumors from normal mucosae with an area under the curve (AUC) value of 1. Our findings suggest that this assay may potentially provide a new metabolomic biomarker for oesophageal cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜菜完成签到,获得积分10
刚刚
1秒前
ljjxd完成签到,获得积分10
1秒前
冰勾板勾发布了新的文献求助10
2秒前
大模型应助优雅的纸鹤采纳,获得10
2秒前
九霄发布了新的文献求助10
3秒前
着急的日记本应助Arrebol采纳,获得10
3秒前
llllly完成签到,获得积分10
3秒前
落寞凌波应助zxling采纳,获得30
5秒前
5秒前
有魅力小刺猬完成签到 ,获得积分10
5秒前
5秒前
普鲁卡因完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
希望天下0贩的0应助星星采纳,获得10
9秒前
狮子完成签到,获得积分20
9秒前
10秒前
10秒前
爆米花应助粗心的胜采纳,获得10
11秒前
爱吃冻梨完成签到,获得积分20
12秒前
ZYY发布了新的文献求助20
12秒前
12秒前
zzzzz发布了新的文献求助10
12秒前
bkagyin应助忧虑的代容采纳,获得30
12秒前
所所应助shanage采纳,获得10
13秒前
就这发布了新的文献求助10
13秒前
佳丽发布了新的文献求助10
13秒前
13秒前
顾矜应助祥云采纳,获得10
14秒前
刘振岁完成签到,获得积分10
14秒前
爆米花应助allofme采纳,获得10
14秒前
歪歪象发布了新的文献求助10
15秒前
zho关闭了zho文献求助
16秒前
凉凉应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
D5发布了新的文献求助10
16秒前
16秒前
smottom应助科研通管家采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019