用水效率
生物
种质资源
蒸腾作用
农学
水稻
生物量(生态学)
作物
植物
光合作用
灌溉
生物化学
基因
作者
Somayanda M. Impa,S. Nadaradjan,P. Boominathan,G. C. Shashidhar,H. Bindumadhava,M. S. Sheshshayee
出处
期刊:Crop Science
[Wiley]
日期:2005-10-28
卷期号:45 (6): 2517-2522
被引量:130
标识
DOI:10.2135/cropsci2005.0119
摘要
Water use efficiency (WUE) is physiologically linked to discrimination of the stable isotope of carbon (Δ 13 C) in leaves of plant species. We determined the genetic variability in WUE by gravimetric approach and Δ 13 C among 34 diverse germplasm accessions of rice ( Oryza sativa L.). The leaf Δ 13 C ranged between 18.7 and 21.6‰, representing a significant variability and showed a strong inverse relationship with WUE. The gravimetrically determined WUE represents time integrated values, and hence its regression with Δ 13 C strongly proves the relevance of Δ 13 C as a surrogate for WUE in rice. For a trait to be successfully exploited for crop improvement, it should have low genotype × environment (G × E) interaction. Six contrasting genotypes selected and examined in a separate experiment showed good correspondence in both WUE and Δ 13 C between the experiments indicating that WUE is genetically controlled in rice and hence can be exploited through breeding. A prior knowledge on the constituent physiological factors controlling WUE is an important prerequisite for exploiting this trait in crop improvement programs. An inverse relationship between WUE and mean transpiration rate (MTR) indicates a stomatal control of WUE among rice genotypes. Although total biomass normally decreases while selecting for high WUE from among conductance types, a few promising genotypes with high WUE coupled with moderately high total biomass can still be identified for further crop improvement.
科研通智能强力驱动
Strongly Powered by AbleSci AI