Improved LAI Algorithm Implementation to MODIS Data by Incorporating Background, Topography, and Foliage Clumping Information

叶面积指数 遥感 土地覆盖 环境科学 通量网 天蓬 算法 数学 生态系统 地理 土地利用 涡度相关法 生物 工程类 土木工程 考古 生态学
作者
Alemu Gonsamo,Jing M. Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (2): 1076-1088 被引量:67
标识
DOI:10.1109/tgrs.2013.2247405
摘要

Leaf area index (LAI) is one of the essential biogeophysical variables related to terrestrial carbon and biogeochemical cycles. The University of Toronto (UofT) LAI product is developed in order to support the European Space Agency GLOBCARBON project for global and climate change assessments. The climate and global change communities have recently requested for a daily 250-m LAI product in order to improve the spatial and temporal patterns of carbon pools and fluxes knowledge. In light of these considerations, we carry out further improvements on the UofT LAI algorithm, including enhanced spatial resolution (250 m) by considering an improved land cover map, local topography, clumping index, and background reflectance variations in order to produce canopy LAI time series. Here, we present the methodological framework and an evaluation of 250-m UofTv2 LAI estimates in forest stands of the Canadian Carbon Program fluxnet sites. The LAI distributions over Canada and the comparison with ground measurements show an improved LAI estimates from the UofT v2 LAI algorithm as compared with the UofT v1 LAI algorithm. One of the key differences between v1 and v2 UofT LAI product is that the former produces total LAI whereas the latter produces overstorey LAI in forest and total LAI in other vegetated land cover types. A daily LAI product can further be extracted from the 10-day UofT v2 LAI time series by fitting various curve fitting algorithms. Although, we have shown the LAI product only over Canada, the algorithm can also be extended for a global 250-m LAI product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drizzling发布了新的文献求助10
刚刚
平淡南松完成签到,获得积分10
1秒前
研友_ED5GK完成签到,获得积分0
1秒前
舒适豌豆发布了新的文献求助10
1秒前
2秒前
生动的雨竹完成签到,获得积分10
2秒前
2秒前
啦啦啦完成签到,获得积分20
3秒前
silentJeremy完成签到,获得积分10
3秒前
3秒前
WNL发布了新的文献求助10
3秒前
4秒前
4秒前
玉yu完成签到 ,获得积分10
4秒前
嗯呢完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
跳跃难胜发布了新的文献求助10
6秒前
大脸妹完成签到,获得积分10
6秒前
愤怒的源智完成签到 ,获得积分10
7秒前
7秒前
7秒前
ganson完成签到 ,获得积分10
7秒前
7秒前
HopeStar发布了新的文献求助10
8秒前
8秒前
bkagyin应助YL采纳,获得10
9秒前
共享精神应助一直采纳,获得10
9秒前
10秒前
无聊先知完成签到,获得积分10
10秒前
传奇3应助CC采纳,获得10
10秒前
Promise发布了新的文献求助10
10秒前
习习发布了新的文献求助100
11秒前
11秒前
12秒前
someone完成签到,获得积分10
12秒前
12秒前
wanyanjin应助南方姑娘采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678