Bacterial endophytes in agricultural crops

生物 植物 弧菌 纤维素酶 细菌 内生真菌在植物防御中的应用 内生菌 微生物学 叶圈 遗传学 生物化学 纤维素
作者
Johannes Hallmann,A. Quadt-Hallmann,W. F. Mahaffee,Joseph W. Kloepper
出处
期刊:Canadian Journal of Microbiology [Canadian Science Publishing]
卷期号:43 (10): 895-914 被引量:1973
标识
DOI:10.1139/m97-131
摘要

Endophytic bacteria are ubiquitous in most plant species, residing latently or actively colonizing plant tissues locally as well as systemically. Several definitions have been proposed for endophytic bacteria; in this review endophytes will be defined as those bacteria that can be isolated from surface-disinfested plant tissue or extracted from within the plant, and that do not visibly harm the plant. While this definition does not include nonextractable endophytic bacteria, it is a practical definition based on experimental limitations and is inclusive of bacterial symbionts, as well as internal plant-colonizing nonpathogenic bacteria with no known beneficial or detrimental effects on colonized plants. Historically, endophytic bacteria have been thought to be weakly virulent plant pathogens but have recently been discovered to have several beneficial effects on host plants, such as plant growth promotion and increased resistance against plant pathogens and parasites. In general, endophytic bacteria originate from the epiphytic bacterial communities of the rhizosphere and phylloplane, as well as from endophyte-infested seeds or planting materials. Besides gaining entrance to plants through natural openings or wounds, endophytic bacteria appear to actively penetrate plant tissues using hydrolytic enzymes like cellulase and pectinase. Since these enzymes are also produced by pathogens, more knowledge on their regulation and expression is needed to distinguish endophytic bacteria from plant pathogens. In general, endophytic bacteria occur at lower population densities than pathogens, and at least some of them do not induce a hypersensitive response in the plant, indicating that they are not recognized by the plant as pathogens. Evolutionarily, endophytes appear to be intermediate between saprophytic bacteria and plant pathogens, but it can only be speculated as to whether they are saprophytes evolving toward pathogens, or are more highly evolved than plant pathogens and conserve protective shelter and nutrient supplies by not killing their host. Overall, the endophytic microfloral community is of dynamic structure and is influenced by biotic and abiotic factors, with the plant itself constituting one of the major influencing factors. Since endophytic bacteria rely on the nutritional supply offered by the plant, any parameter affecting the nutritional status of the plant could consequently affect the endophytic community. This review summarizes part of the work being done on endophytic bacteria, including their methodology, colonization, and establishment in the host plant, as well as their role in plant–microbe interactions. In addition, speculative conclusions are raised on some points to stimulate thought and research on endophytic bacteria.Key words: endophytic bacteria, methods, localization, diversity, biological control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱钱完成签到,获得积分10
刚刚
科研通AI6应助www采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
yunyueqixun完成签到,获得积分10
2秒前
江J发布了新的文献求助30
2秒前
刘佳诺发布了新的文献求助10
2秒前
丽优发布了新的文献求助10
3秒前
求助人员发布了新的文献求助10
3秒前
土豆完成签到,获得积分10
4秒前
free_man完成签到,获得积分10
4秒前
蛋黄啵啵完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
元谷雪发布了新的文献求助10
6秒前
6秒前
喜悦的威应助科研通管家采纳,获得50
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
烟花应助阿强采纳,获得10
8秒前
asdfzxcv应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
jian应助vivre223采纳,获得10
10秒前
李健应助IVY采纳,获得10
10秒前
10秒前
10秒前
ikutovaya完成签到,获得积分10
11秒前
科研通AI6应助钱钱采纳,获得10
12秒前
祖丽发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499