相关性(法律)
计算机科学
情报检索
超图
集合(抽象数据类型)
人工智能
人气
机器学习
数学
心理学
社会心理学
离散数学
政治学
法学
程序设计语言
作者
Yue Gao,Meng Wang,Zheng-Jun Zha,Jialie Shen,Xuelong Li,Xindong Wu
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2013-01-01
卷期号:22 (1): 363-376
被引量:392
标识
DOI:10.1109/tip.2012.2202676
摘要
Due to the popularity of social media websites, extensive research efforts have been dedicated to tag-based social image search. Both visual information and tags have been investigated in the research field. However, most existing methods use tags and visual characteristics either separately or sequentially in order to estimate the relevance of images. In this paper, we propose an approach that simultaneously utilizes both visual and textual information to estimate the relevance of user tagged images. The relevance estimation is determined with a hypergraph learning approach. In this method, a social image hypergraph is constructed, where vertices represent images and hyperedges represent visual or textual terms. Learning is achieved with use of a set of pseudo-positive images, where the weights of hyperedges are updated throughout the learning process. In this way, the impact of different tags and visual words can be automatically modulated. Comparative results of the experiments conducted on a dataset including $370+{\rm images}$ are presented, which demonstrate the effectiveness of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI