Synthesis, optical and electrochemical properties of in-situ thermally cross-linkable oligo(10H-alkylphenothiazine)

热重分析 差示扫描量热法 高分子化学 材料科学 化学工程 化学 有机化学 工程类 物理 热力学
作者
Mi Young Jo,Seong Soo Park,Joo Hyun Kim
出处
期刊:Synthetic Metals [Elsevier BV]
卷期号:162 (1-2): 70-78 被引量:11
标识
DOI:10.1016/j.synthmet.2011.11.012
摘要

A series of 10-alkylphenothiazine trimer (3-PTMA) and pentamer (5-PTMA) with in-situ thermally cross-linkable methyl methacrylate were successfully synthesized. Thermogravimetric analysis (TGA) thermograms revealed that 3-PTMA and 5-PTMA are stable up to 270 and 336 °C, respectively. In the first heating scan of differential scanning calorimetry (DSC) thermogram, 3-PTMA and 5-PTMA showed Tg at 91.2 and 99.7 °C. Both 3-PTMA and 5-PTMA showed broad endothermic process in the region of 144–179 °C, which was thermally cross-linking temperature. In the second heating process, Tg of 3-PTMA and 5-PTMA were 113.4 and 149.8 °C and endothermic process was not observed. UV–vis absorption maximum of thermally cured 3-PTMA is 340 nm, which was same as the UV–vis maximum of 5-PTMA. The absorbance at 340 nm of thermally cured 3-PTMA and 5-PTMA film washed with organic solvent such as methylene chloride (MC), chloroform, and toluene was almost same as the cured 3-PTMA and 5-PTMA, indicating that thermally cured films were very good solvent resistance. Thermally cured 3-PTMA and 5-PTMA were electrochemically stable and the HOMO energy level of 3-PTMA and 5-PTMA were −5.58 and −5.54 eV, respectively. Double layer structured polymer light-emitting diodes based on in-situ thermally cured 3-PTMA and 5-PTMA were fabricated. The maximum luminance efficiency of devices based on 3-PTMA and 5-PTMA were 0.685 cd/A at 16.0 V and 0.760 cd/A at 14.5 V, respectively, which were higher than that of the device without thermally cured 3-PTMA or 5-PTMA (0.348 cd/A at 15.0 V).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
友好的储发布了新的文献求助10
2秒前
3秒前
gattina完成签到,获得积分10
4秒前
打打应助shu采纳,获得10
4秒前
正直冰露完成签到,获得积分10
4秒前
5秒前
友好的储完成签到,获得积分10
7秒前
大模型应助北极黑猩猩采纳,获得10
8秒前
10秒前
Thinkol发布了新的文献求助10
11秒前
13秒前
乐乐应助聪明的媚颜采纳,获得10
14秒前
超级碧曼完成签到,获得积分10
15秒前
爱吃蒸蛋发布了新的文献求助10
16秒前
16秒前
Lucas应助手拿把掐采纳,获得10
17秒前
wangwangwang发布了新的文献求助10
17秒前
21秒前
迷人秋烟应助锐0105采纳,获得100
24秒前
celia完成签到 ,获得积分10
27秒前
28秒前
29秒前
31秒前
WaveletZ完成签到,获得积分10
31秒前
32秒前
烦死了啦发布了新的文献求助10
34秒前
35秒前
Hello应助科研通管家采纳,获得10
35秒前
nnnnn完成签到,获得积分10
35秒前
Xiaoxiao应助科研通管家采纳,获得20
35秒前
wjw完成签到,获得积分10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
英姑应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
安雨契给安雨契的求助进行了留言
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677423
求助须知:如何正确求助?哪些是违规求助? 3231223
关于积分的说明 9794908
捐赠科研通 2942368
什么是DOI,文献DOI怎么找? 1613094
邀请新用户注册赠送积分活动 761431
科研通“疑难数据库(出版商)”最低求助积分说明 736862