Sensors for Gesture Recognition Systems

手势 计算机科学 手势识别 人机交互 背景(考古学) 人工智能 光学(聚焦) 计算机视觉 生物 光学 物理 古生物学
作者
Sigal Berman,Helman I. Stern
出处
期刊:IEEE transactions on systems, man and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 277-290 被引量:105
标识
DOI:10.1109/tsmcc.2011.2161077
摘要

A gesture recognition system (GRS) is comprised of a gesture, gesture-capture device (sensor), tracking algorithm (for motion capture), feature extraction, and classification algorithm. With the impending movement toward natural communication with mechanical and software systems, it is important to examine the first apparatus that separates the human communicator and the device being controlled. Although there are numerous reviews of GRSs, a comprehensive analysis of the integration of sensors into GRSs and their impact on system performance is lacking in the professional literature. Thus, we have undertaken this effort. Determination of the sensor stimulus, context of use, and sensor platform are major preliminary design issues in GRSs. Thus, these three components form the basic structure of our taxonomy. We emphasize the relationship between these critical components and the design of the GRS in terms of its architectural functions and computational requirements. In this treatise, we consider sensors that are capable of capturing dynamic and static arm and hand gestures. Although we discuss various sensor types, our main focus is on visual sensors as we expect these to become the sensor of choice in the foreseeable future. We delineate the challenges ahead for their increased effectiveness in this application domain. We note as a special challenge, the development of sensors that take over many of the functions the GRS designer struggles with today. We believe our contribution, in this first survey on sensors for GRSs, can give valuable insights into this important research and development topic, and encourage advanced research directions and new approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助家迎松采纳,获得10
1秒前
2秒前
3秒前
Ecn发布了新的文献求助10
5秒前
5秒前
Jack发布了新的文献求助10
5秒前
5秒前
我爱酸菜鱼完成签到,获得积分10
6秒前
DMA50完成签到 ,获得积分10
7秒前
沐姆关注了科研通微信公众号
7秒前
7秒前
张可洋完成签到,获得积分20
8秒前
开心的问儿完成签到 ,获得积分10
8秒前
11秒前
11秒前
13秒前
Ecn完成签到,获得积分10
15秒前
16秒前
16秒前
善学以致用应助迅速醉冬采纳,获得10
18秒前
小文子完成签到,获得积分10
18秒前
YwYzzZ发布了新的文献求助10
18秒前
19秒前
20秒前
爱吃橙子的临床小白完成签到 ,获得积分10
20秒前
21秒前
koko发布了新的文献求助10
21秒前
研友_VZG7GZ应助ljy1111采纳,获得10
22秒前
一步一个脚印完成签到,获得积分20
22秒前
123发布了新的文献求助10
23秒前
hy发布了新的文献求助10
24秒前
dgiao发布了新的文献求助10
25秒前
25秒前
瑞仔发布了新的文献求助10
25秒前
等待的金毛完成签到,获得积分10
25秒前
25秒前
25秒前
科研通AI5应助认真的灵枫采纳,获得10
26秒前
小玉完成签到,获得积分10
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736110
求助须知:如何正确求助?哪些是违规求助? 3279874
关于积分的说明 10017385
捐赠科研通 2996546
什么是DOI,文献DOI怎么找? 1644134
邀请新用户注册赠送积分活动 781787
科研通“疑难数据库(出版商)”最低求助积分说明 749462