内德4
泛素连接酶
蛋白激酶B
泛素
细胞生物学
PI3K/AKT/mTOR通路
磷酸化
生物
信号转导
化学
生物化学
基因
作者
Chuan-Dong Fan,Michelle A. Lum,Chao Xu,Jennifer D. Black,Xinjiang Wang
标识
DOI:10.1074/jbc.m112.416339
摘要
AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner.Background: After activation by phosphorylation, phospho-AKT (pAKT) is translocated to nucleus.Results: Ubiquitination of pAKT by NEDD4-1 is coupled to AKT activation at the plasma membrane by insulin-like growth factor (IGF)-1, which promotes pAKT nuclear trafficking.Conclusion: NEDD4-1 is an E3 ligase for pAKT specifically involved in pAKT nuclear trafficking in IGF-1 signaling.Significance: AKT activation and proper subcellular localization requires specific E3 ligases in a ligand-specific manner. AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner. Background: After activation by phosphorylation, phospho-AKT (pAKT) is translocated to nucleus. Results: Ubiquitination of pAKT by NEDD4-1 is coupled to AKT activation at the plasma membrane by insulin-like growth factor (IGF)-1, which promotes pAKT nuclear trafficking. Conclusion: NEDD4-1 is an E3 ligase for pAKT specifically involved in pAKT nuclear trafficking in IGF-1 signaling. Significance: AKT activation and proper subcellular localization requires specific E3 ligases in a ligand-specific manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI