Is family special to the brain? An event-related fMRI study of familiar, familial, and self-face recognition

心理学 后扣带 意识的神经相关物 面部知觉 认知心理学 面子(社会学概念) 功能磁共振成像 前额叶皮质 神经科学 感知 认知 社会科学 社会学
作者
Steven M. Platek,Shelly M. Kemp
出处
期刊:Neuropsychologia [Elsevier]
卷期号:47 (3): 849-858 被引量:111
标识
DOI:10.1016/j.neuropsychologia.2008.12.027
摘要

The face-processing network has evolved to respond differentially to different classes of faces depending on their relevance to the perceiver. For example, self-, familiar, and unknown faces are associated with activation in different neural substrates. Family should represent a special class of face stimuli that is of high relevance to individuals, because incorrect assignment of kinship can have dire consequences (e.g., incest, cuckoldry). Therefore evolution should have favored redundant mechanisms for detection of kin. We used fMRI to investigate the neural substrates associated with viewing faces of kin compared to other classes of faces (e.g., self-face, familiar face, and unknown face), and to examine the degree to which self-facial resemblance activated similar neural substrates. Contrasting kin faces with unknown faces activated substrates associated with self-face recognition, while comparing kin faces to friend faces activated posterior cingulate and cuneus. Similar posterior medial substrates were recruited when contrasting self-resembling faces with morphed faces of kin, suggesting these regions potentially represent computational processing about facial familiarity and identity. On the other hand, discrimination of self-resembling faces from familiar morphs activated anterior medial substrates (anterior cingulate cortex, ACC, medial prefrontal cortex, MPFC). These findings, and a region of interest (ROI) analysis, highlight the role of the extended face-processing network for discrimination of kin from familiar non-kin members of one's social group based on self-referent phenotypic cues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
3秒前
撒西不理发布了新的文献求助10
3秒前
小鞋发布了新的文献求助10
3秒前
完美世界应助搞怪书兰采纳,获得10
3秒前
itszoefff发布了新的文献求助10
4秒前
4秒前
4秒前
传奇3应助重要眼睛采纳,获得10
4秒前
CipherSage应助Stephen采纳,获得10
4秒前
阳阳发布了新的文献求助10
4秒前
科研通AI5应助vikoel采纳,获得10
4秒前
慕青应助流年采纳,获得10
4秒前
5秒前
5秒前
sakurayuku完成签到,获得积分10
5秒前
5秒前
hyd1640发布了新的文献求助30
5秒前
zjq完成签到,获得积分10
6秒前
6秒前
6秒前
caoyy完成签到,获得积分10
6秒前
科研通AI5应助好运来采纳,获得10
6秒前
6秒前
scirev发布了新的文献求助10
6秒前
7秒前
7秒前
suibianba应助Z赵采纳,获得10
7秒前
YC_Kao完成签到,获得积分10
7秒前
TGU2331161488应助光亮的擎采纳,获得10
8秒前
SciGPT应助Debjor采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
郑qqqq发布了新的文献求助10
8秒前
调皮万怨发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543314
求助须知:如何正确求助?哪些是违规求助? 3120695
关于积分的说明 9343843
捐赠科研通 2818781
什么是DOI,文献DOI怎么找? 1549765
邀请新用户注册赠送积分活动 722233
科研通“疑难数据库(出版商)”最低求助积分说明 713090