清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

(18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer.

医学 阶段(地层学) 肺癌 比例危险模型 放射科 癌症 正电子发射断层摄影术 肿瘤科 内科学 核医学 生物 古生物学
作者
Rodney J. Hicks,Victor Kalff,Michael MacManus,Robert E. Ware,Annette Hogg,Allan F McKenzie,Jane Matthews,David Ball
出处
期刊:PubMed 卷期号:42 (11): 1596-604 被引量:239
链接
标识
摘要

Survival of lung cancer patients remains poor despite increasingly aggressive treatment. Conventional staging has well-described limitations. (18)F-FDG PET has been shown to stage lung cancer more accurately than does CT scanning, but the impact on patient treatment and outcome is poorly defined. This study evaluated this impact in routine clinical practice within a tertiary oncology facility.For 153 consecutive patients with newly diagnosed non-small cell lung cancer, the treatment plan based on conventional staging methods was compared with the treatment plan based on incorporation of PET findings. Survival was analyzed using the Cox proportional hazards regression model.For broad groupings of stage, 10% of cases were downstaged and 33% upstaged by PET. When assessable, the PET stage was confirmed in 89% of patients. PET had a high impact on 54 patients (35%), including 34 whose therapy was changed from curative to palliative, 6 whose therapy was changed from palliative to curative, and 14 whose treatment modality was changed but not the treatment intent. For 39 patients (25%), a previously selected therapy was altered because of the PET findings. The Cox model indicated that the pre-PET stage was significantly associated with survival (P = 0.013) but that the post-PET stage provided much stronger prognostic stratification (P < 0.0001) and remained significant after adjustment for treatment delivered.Staging that incorporated PET provided a more accurate prognostic stratification than did staging based on conventional investigations. Further, the additional information provided by PET significantly and appropriately changed management in the majority of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刻苦的新烟完成签到 ,获得积分10
3秒前
9秒前
Muller完成签到,获得积分10
9秒前
钱念波发布了新的文献求助10
11秒前
ZhangZhang发布了新的文献求助10
13秒前
斯文败类应助白华苍松采纳,获得10
18秒前
属实有点拉胯完成签到 ,获得积分10
31秒前
david关注了科研通微信公众号
34秒前
Huong完成签到,获得积分10
37秒前
稻子完成签到 ,获得积分10
44秒前
zz完成签到 ,获得积分10
48秒前
寒战完成签到 ,获得积分10
51秒前
Glory完成签到 ,获得积分10
1分钟前
地球观光客完成签到,获得积分10
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
yinhe完成签到 ,获得积分10
1分钟前
秋夜临完成签到,获得积分10
1分钟前
wushuimei完成签到 ,获得积分10
1分钟前
Guo完成签到 ,获得积分10
1分钟前
sganthem完成签到,获得积分10
1分钟前
orixero应助ZhangZhang采纳,获得10
2分钟前
2分钟前
ZhangZhang完成签到,获得积分20
2分钟前
阿成完成签到,获得积分10
2分钟前
大成子完成签到,获得积分10
2分钟前
3分钟前
wang5945完成签到 ,获得积分10
3分钟前
jluhewei发布了新的文献求助10
3分钟前
jyy应助didi采纳,获得10
3分钟前
wyh295352318完成签到 ,获得积分10
3分钟前
Stone发布了新的文献求助10
4分钟前
mf2002mf完成签到 ,获得积分10
4分钟前
miujin应助178181采纳,获得10
4分钟前
啦啦啦完成签到 ,获得积分10
4分钟前
怕孤独的访云完成签到 ,获得积分10
4分钟前
充电宝应助白华苍松采纳,获得10
4分钟前
尹沐完成签到 ,获得积分10
4分钟前
房天川完成签到 ,获得积分10
5分钟前
饱满语风完成签到 ,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510761
求助须知:如何正确求助?哪些是违规求助? 3093588
关于积分的说明 9217461
捐赠科研通 2787811
什么是DOI,文献DOI怎么找? 1529955
邀请新用户注册赠送积分活动 710626
科研通“疑难数据库(出版商)”最低求助积分说明 706272