初始化
自适应采样
网格生成
曲面(拓扑)
采样(信号处理)
计算机科学
边界(拓扑)
拓扑(电路)
算法
数学优化
数学
几何学
有限元法
数学分析
计算机视觉
工程类
统计
滤波器(信号处理)
组合数学
结构工程
程序设计语言
蒙特卡罗方法
标识
DOI:10.1016/0010-4485(95)95872-c
摘要
A principle in surface sampling and mesh generation is that highly curved areas should be sampled densely and vice versa. The paper presents an approach for automated surface sampling and adaptive mesh generation in accordance with this principle. The approach is self-organizing, forming topology-preserving mesh from random initialization. Mesh spacing versus surface curvedness can be easily controlled by a single parameter in the shape function. Key locations can be prescribed by imposing additional boundary conditions. Experiments are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI