Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI

椎骨 分割 人工智能 计算机科学 阿达布思 图像分割 计算机视觉 模式识别(心理学) 医学 解剖 分类器(UML)
作者
Szu-Hao Huang,Yi-Hong Chu,Shang‐Hong Lai,Carol L. Novak
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 1595-1605 被引量:154
标识
DOI:10.1109/tmi.2009.2023362
摘要

Automatic extraction of vertebra regions from a spinal magnetic resonance (MR) image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation system, which consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. In order to produce an efficient and effective vertebra detector, a statistical learning approach based on an improved AdaBoost algorithm is proposed. A robust estimation procedure is applied on the detected vertebra locations to fit a spine curve, thus refining the above vertebra detection results. This refinement process involves removing the false detections and recovering the miss-detected vertebrae. Finally, an iterative normalized-cut segmentation algorithm is proposed to segment the precise vertebra regions from the detected vertebra locations. In our implementation, the proposed AdaBoost-based detector is trained from 22 spinal MR volume images. The experimental results show that the proposed vertebra detection and segmentation system can achieve nearly 98% vertebra detection rate and 96% segmentation accuracy on a variety of testing spinal MR images. Our experiments also show the vertebra detection and segmentation accuracies by using the proposed algorithm are superior to those of the previous representative methods. The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助helio采纳,获得10
刚刚
1秒前
htmy完成签到,获得积分10
1秒前
外婆桥完成签到,获得积分10
2秒前
小蘑菇应助笑嘻嘻采纳,获得10
2秒前
无心的怜烟完成签到,获得积分10
2秒前
乐乐应助张渔歌采纳,获得10
4秒前
4秒前
三色堇完成签到,获得积分10
4秒前
wipmzxu完成签到,获得积分10
5秒前
li发布了新的文献求助10
5秒前
整齐的冰真完成签到,获得积分10
5秒前
脑洞疼应助北极光采纳,获得10
6秒前
wangyao_yolanda完成签到,获得积分20
6秒前
7秒前
英俊的铭应助fenfen采纳,获得10
7秒前
cjjwei完成签到 ,获得积分10
8秒前
9秒前
飘逸晓山完成签到,获得积分20
10秒前
11秒前
12秒前
我是老大应助狂野半青采纳,获得10
12秒前
艺晨完成签到 ,获得积分10
12秒前
甘木鸣完成签到 ,获得积分10
13秒前
北极光完成签到,获得积分20
14秒前
网球关注了科研通微信公众号
14秒前
笑嘻嘻发布了新的文献求助10
14秒前
Triones完成签到,获得积分10
14秒前
星辰大海应助wisteety采纳,获得10
16秒前
17秒前
XYWang发布了新的文献求助10
17秒前
五味杂陈关注了科研通微信公众号
17秒前
wll发布了新的文献求助10
19秒前
wwl完成签到,获得积分10
20秒前
白华苍松发布了新的文献求助10
22秒前
23秒前
llllqqq完成签到,获得积分10
25秒前
26秒前
上进生发布了新的文献求助10
26秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155652
求助须知:如何正确求助?哪些是违规求助? 2806900
关于积分的说明 7870998
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312153
科研通“疑难数据库(出版商)”最低求助积分说明 629913
版权声明 601892