已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI

椎骨 分割 人工智能 计算机科学 阿达布思 图像分割 计算机视觉 模式识别(心理学) 医学 解剖 分类器(UML)
作者
Szu-Hao Huang,Yi-Hong Chu,Shang‐Hong Lai,Carol L. Novak
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 1595-1605 被引量:154
标识
DOI:10.1109/tmi.2009.2023362
摘要

Automatic extraction of vertebra regions from a spinal magnetic resonance (MR) image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation system, which consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. In order to produce an efficient and effective vertebra detector, a statistical learning approach based on an improved AdaBoost algorithm is proposed. A robust estimation procedure is applied on the detected vertebra locations to fit a spine curve, thus refining the above vertebra detection results. This refinement process involves removing the false detections and recovering the miss-detected vertebrae. Finally, an iterative normalized-cut segmentation algorithm is proposed to segment the precise vertebra regions from the detected vertebra locations. In our implementation, the proposed AdaBoost-based detector is trained from 22 spinal MR volume images. The experimental results show that the proposed vertebra detection and segmentation system can achieve nearly 98% vertebra detection rate and 96% segmentation accuracy on a variety of testing spinal MR images. Our experiments also show the vertebra detection and segmentation accuracies by using the proposed algorithm are superior to those of the previous representative methods. The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火完成签到 ,获得积分10
刚刚
刚刚
lsq12321发布了新的文献求助10
2秒前
共享精神应助yu采纳,获得10
3秒前
3秒前
彩色德天完成签到,获得积分10
5秒前
文艺凉面完成签到 ,获得积分10
5秒前
6秒前
Shuo Yang发布了新的文献求助20
7秒前
彩色德天发布了新的文献求助10
8秒前
萧水白发布了新的文献求助100
9秒前
12秒前
mmnn完成签到 ,获得积分10
14秒前
17秒前
fransiccarey完成签到,获得积分10
17秒前
小yy完成签到 ,获得积分10
25秒前
TT完成签到,获得积分10
28秒前
wlj完成签到 ,获得积分10
34秒前
阿王发布了新的文献求助10
36秒前
xiaomu完成签到,获得积分10
36秒前
xiuxiu完成签到 ,获得积分10
37秒前
司空天德完成签到,获得积分0
38秒前
yang发布了新的文献求助10
40秒前
酷波er应助IIIllIIIllI采纳,获得10
43秒前
无花果应助莫茹采纳,获得10
43秒前
专一的白萱完成签到 ,获得积分10
46秒前
46秒前
47秒前
奋斗机器猫完成签到 ,获得积分10
50秒前
wsl发布了新的文献求助10
51秒前
Xiaojiu完成签到 ,获得积分10
53秒前
54秒前
不语完成签到,获得积分10
55秒前
程程完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
57秒前
科研通AI2S应助瞿寒采纳,获得10
57秒前
nini完成签到,获得积分20
58秒前
IIIllIIIllI发布了新的文献求助10
59秒前
yimax完成签到,获得积分10
1分钟前
多多完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234