再灌注损伤
缺血
烯醇化酶
医学
碱性成纤维细胞生长因子
生理盐水
麻醉
肿瘤坏死因子α
坏死
内科学
内分泌学
生长因子
免疫组织化学
受体
作者
Mao Zhang,Yuefeng Ma,Jing Gan,Guanyu Jiang,Shuchang Xu,Xiang-luo Tao,Hongyu An,Jiaokun Li
出处
期刊:Journal of Zhejiang University
[Zhejiang University Press]
日期:2005-07-01
卷期号:6B (7): 637-643
被引量:7
标识
DOI:10.1631/jzus.2005.b0637
摘要
The aim of this study was to explore the protective effect of basic fibroblast growth factor (bFGF) on brain injury following global ischemia reperfusion and its mechanisms. Brain injury following global ischemia was induced by four vessels occlusion and systemic hypotension. Twenty-four rabbits were randomized into three groups: group A, only dissection of vessels; group B, intravenous infusion of normal saline after reperfusion for 6 h; group C, 30 microg/kg bFGF injected intravenously at the onset of reperfusion, then infused with 10 microg/(kg.h) for 6 h. Serum neuron specific enolase (NSE), S-100B, tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), interleukin-8 (IL-8) were measured before ischemia, 30 min after ischemia, 0.5, 1, 3, 6 h after reperfusion. Brain water content was determined and cerebral histopathological damages were compared. NSE and S-100B were increased 1 h after reperfusion and reached their peaks 6 h after reperfusion, but were much higher in group B than those in group C 3, 6 h after reperfusion. In groups B and C, TNF-alpha was increased after ischemia and IL-1 and IL-8 were increased significantly 0.5 h after reperfusion, then reached their peaks 6 h, 3 h, 6 h after reperfusion respectively. TNF-alpha and IL-8 at the time points of 1 h and 3 h and IL-1 at 3 h and 6 h in group C were correspondingly lower than those in group B. These indices in group A were nearly unchanged. There were less severe cerebral histopathological damages in group C compared with group B, but no difference in brain water content. It could be concluded that bFGF alleviates brain injury following global ischemia and reperfusion by down-regulating expression of inflammatory factors and inhibiting their activities.
科研通智能强力驱动
Strongly Powered by AbleSci AI