Theory of vibronic intensity borrowing. Comparison of Herzberg-Teller and Born-Oppenheimer coupling

振动耦合 振动光谱学 激发态 化学 法向坐标 原子物理学 动力学同位素效应 基态 跃迁偶极矩 偶极子 微扰理论(量子力学) 激发 物理 量子力学 分子
作者
Giorgio Orlandi,Willem Siebrand
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:58 (10): 4513-4523 被引量:165
标识
DOI:10.1063/1.1679014
摘要

The Herzberg-Teller theory of vibronic intensity borrowing is reinvestigated. A potentially serious deficiency is found in the conventional approximation scheme based on neglecting vibronic perturbation of the ground state relative to that of the excited state. Simple theoretical models are studied and show systematic cancellation of the lowest-order induced transition dipole moment if both vibronic perturbations are included. As a result the vibronic coupling between Born-Oppenheimer states via nuclear momenta, for which such a cancellation does not occur, tends to contribute measurably to the induced transition moment, contrary to what usually is assumed. Two methods to distinguish between Herzberg-Teller-type (HT) and Born-Oppenheimer-type (BO) contributions are discussed, namely the absorption-emission asymmetry and the isotope effect. The former results from interference between HT and BO terms, which is usually constructive in absorption and destructive in emission; the latter is due to the fact that BO coupling is much more sensitive to isotopic substitution than HT coupling. The induced components of S0−S1 transitions in benzene, pyrazine, and pyrene are shown to exhibit anomalous isotope effects and/or absorption-emission asymmetries which indicate substantial BO contributions, even when normal-coordinate rotation upon deuteration or excitation is taken into account. It is concluded that a quantitative calculation scheme for vibronically induced intensities must include vibronic perturbation of the ground state and both HT and BO couplings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小天应助善良的路灯采纳,获得30
刚刚
刚刚
脑洞疼应助yigu采纳,获得10
1秒前
1秒前
Hu完成签到 ,获得积分10
3秒前
liuyan432完成签到,获得积分10
3秒前
cc完成签到,获得积分10
3秒前
易烊千玺完成签到,获得积分20
3秒前
哒哒哒哒完成签到,获得积分10
3秒前
4秒前
李健应助陶醉觅夏采纳,获得10
5秒前
5秒前
独特凡松完成签到,获得积分10
5秒前
木笔朱瑾完成签到 ,获得积分10
6秒前
Rinohalt完成签到,获得积分10
6秒前
7秒前
孙梁子完成签到,获得积分10
7秒前
核桃花生奶兔完成签到 ,获得积分10
8秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
9秒前
10秒前
孙奕发布了新的文献求助10
10秒前
xiaotian_fan完成签到,获得积分10
10秒前
12秒前
12秒前
科研通AI2S应助laochen采纳,获得10
12秒前
盘尼西林发布了新的文献求助10
12秒前
迟大猫应助专心搞学术采纳,获得10
13秒前
15秒前
孙奕完成签到,获得积分10
16秒前
16秒前
俟天晴完成签到,获得积分10
16秒前
淡定问芙发布了新的文献求助30
17秒前
19秒前
Lewis完成签到,获得积分10
20秒前
orixero应助TranYan采纳,获得10
20秒前
猪猪hero发布了新的文献求助10
22秒前
23秒前
今后应助333采纳,获得10
24秒前
pu发布了新的文献求助10
25秒前
Akim应助梓榆采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794