日冕(行星地质学)
人文学科
物理
电晕放电
艺术
电压
量子力学
天体生物学
维纳斯
作者
I. Gallimberti,G. Bacchiega,A. Bondiou‐Clergerie,P. Lalande
标识
DOI:10.1016/s1631-0705(02)01414-7
摘要
The development of atmospheric lightning is initiated and sustained by the formation in virgin air of ‘streamer corona’ and ‘leader’ discharges, very similar to those observed in laboratory long sparks. Therefore, the experimental and theoretical investigations of these laboratory discharges have become of large interest to improve the physical knowledge of the lightning process and to develop self-consistent models that could be applied to new protection concepts. In the present paper the fundamental processes of the subsequent phases of long air gap discharges are analyzed, from the first corona inception and development to the leader channel formation and propagation. For all these processes simulations models are discussed that have been essentially derived and simplified by the authors, in order to develop sequential time-dependent simulation of the laboratory breakdown, with both positive and negative voltages. The possibility of extending these models to the case of natural lightning is discussed in the companion paper, presented in this same volume. To cite this article: I. Gallimberti et al., C. R. Physique 3 (2002) 1335–1359. La formation d'un éclair débute par le développement, dans l'air vierge, de décharges électriques de type « corona » et « leader », semblables à celles observées en laboratoire haute tension sur de grands intervalles d'air. Ainsi, les études expérimentale et théorique des décharges de laboratoire sont un moyen pour comprendre les mécanismes physiques mis en jeu dans le développement de l'éclair. Ces études ont abouti au développement de modèles physiques qui permettent de simuler les décharges électriques et qui peuvent être utilisées pour optimiser les protections contre la foudre. Dans cet article, les mécanismes physiques associés à chaque étape du développement d'une décharge électrique sont décrits. On analyse la formation du « corona » et la propagation du « leader ». Pour chacun des mécanismes, des modèles de simulation sont présentés et analysés. A partir de ces modèles élémentaires, les auteurs développent des modèles complets pour simuler la propagation spatiale et temporelle des décharges électriques positive et négative de laboratoire. L'adaptation de ces modèles au cas de l'éclair est discutée dans le papier associé dans ce même volume. Pour citer cet article : I. Gallimberti et al., C. R. Physique 3 (2002) 1335–1359.
科研通智能强力驱动
Strongly Powered by AbleSci AI