Image Denoising Methods. A New Nonlocal Principle

降噪 噪音(视频) 图像(数学) 算法 计算机科学 图像处理 数字图像 白噪声 数学 人工智能 统计
作者
Antoni Buades,Bartomeu Coll,Jean‐Michel Morel
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:52 (1): 113-147 被引量:390
标识
DOI:10.1137/090773908
摘要

The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove fine structures in images. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NL-means) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise,” defined as the difference between a digital image and its denoised version. The NL-means algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods is compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptual-mathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of $L^2$ distances of the denoised version to the original image. The fourth and perhaps most powerful evaluation method is, however, the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan_zhou完成签到,获得积分10
刚刚
刚刚
梁正强完成签到,获得积分10
刚刚
罗霄山完成签到,获得积分10
1秒前
瞿冷之完成签到,获得积分10
1秒前
田様应助梅梅采纳,获得10
1秒前
2秒前
清萍红檀完成签到,获得积分10
3秒前
自觉的电源完成签到,获得积分20
3秒前
Sunmqiannn完成签到,获得积分10
3秒前
lidongyang完成签到,获得积分20
3秒前
南屏晚钟完成签到,获得积分10
4秒前
彭于晏应助强健的电话采纳,获得10
4秒前
大模型应助coolkid采纳,获得10
4秒前
瞿冷之发布了新的文献求助10
4秒前
刘十一完成签到 ,获得积分10
6秒前
无语死了完成签到,获得积分10
6秒前
6秒前
lidongyang发布了新的文献求助10
7秒前
丰知然应助老肥采纳,获得10
7秒前
yyw发布了新的文献求助10
7秒前
xiao123789完成签到,获得积分10
7秒前
rosalieshi应助syk采纳,获得30
9秒前
沉静依云发布了新的文献求助10
9秒前
Yeah完成签到,获得积分10
10秒前
11秒前
11秒前
勤劳的星月完成签到,获得积分10
11秒前
夏沫发布了新的文献求助10
12秒前
Fengliguantou发布了新的文献求助10
12秒前
小胡发布了新的文献求助10
12秒前
13秒前
ping777755完成签到,获得积分10
14秒前
HCLonely应助lixuebin采纳,获得10
15秒前
125ljw发布了新的文献求助10
17秒前
17秒前
CodeCraft应助勤劳的星月采纳,获得30
17秒前
梅梅完成签到,获得积分10
17秒前
yogurt_tju完成签到,获得积分10
17秒前
pe关闭了pe文献求助
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272