Image Denoising Methods. A New Nonlocal Principle

降噪 噪音(视频) 图像(数学) 算法 计算机科学 图像处理 数字图像 白噪声 数学 人工智能 统计
作者
Antoni Buades,Bartomeu Coll,Jean‐Michel Morel
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:52 (1): 113-147 被引量:390
标识
DOI:10.1137/090773908
摘要

The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove fine structures in images. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NL-means) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise,” defined as the difference between a digital image and its denoised version. The NL-means algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods is compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptual-mathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of $L^2$ distances of the denoised version to the original image. The fourth and perhaps most powerful evaluation method is, however, the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Muhammad采纳,获得10
刚刚
1秒前
ED应助啾啾啾采纳,获得20
1秒前
领导范儿应助啾啾啾采纳,获得10
1秒前
万松辉完成签到,获得积分10
1秒前
yyy发布了新的文献求助10
1秒前
2秒前
yyy发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
刘林美完成签到,获得积分20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助30
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
4秒前
yyy发布了新的文献求助30
4秒前
在水一方应助小小阿杰采纳,获得10
5秒前
纸张猫猫关注了科研通微信公众号
5秒前
6秒前
稳重的安萱完成签到,获得积分10
9秒前
9秒前
9秒前
hh应助lianliyou采纳,获得50
10秒前
banana完成签到 ,获得积分10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176