Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核动力驴应助你好采纳,获得10
刚刚
残雪完成签到 ,获得积分10
刚刚
nininidoc完成签到,获得积分10
1秒前
科研通AI6应助kolico采纳,获得10
1秒前
给好评发布了新的文献求助10
1秒前
无限的绮晴完成签到,获得积分10
2秒前
鑫鑫完成签到,获得积分10
2秒前
sszz发布了新的文献求助10
3秒前
星辰大海应助张雯雯采纳,获得10
3秒前
qq发布了新的文献求助10
3秒前
xiaaa发布了新的文献求助10
3秒前
orixero应助科研小白采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
小马甲应助王启采纳,获得10
4秒前
tgene发布了新的文献求助10
4秒前
三七四十三完成签到,获得积分10
4秒前
核动力驴应助娓鸢采纳,获得10
4秒前
稳重飞飞完成签到,获得积分10
5秒前
豆包完成签到,获得积分10
5秒前
阿喔完成签到,获得积分10
5秒前
晓桐完成签到,获得积分10
5秒前
呵呵呵呵完成签到,获得积分10
6秒前
oasis完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
SciGPT应助李凯采纳,获得30
8秒前
英姑应助科研通管家采纳,获得30
9秒前
Jared应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
浮游应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271