Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分10
刚刚
个性的夜天完成签到,获得积分10
刚刚
哆唻发布了新的文献求助10
1秒前
大渡河完成签到,获得积分10
1秒前
428发布了新的文献求助10
2秒前
小AB发布了新的文献求助10
2秒前
keyan111完成签到,获得积分10
2秒前
裴果发布了新的文献求助10
2秒前
啦啦完成签到 ,获得积分10
3秒前
酷酷一笑完成签到,获得积分10
3秒前
开心完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
zhuchenglu完成签到,获得积分10
3秒前
王嘿嘿完成签到,获得积分10
4秒前
无聊的怀绿完成签到,获得积分10
5秒前
爆米花应助goodgay133采纳,获得10
5秒前
而风不止完成签到,获得积分10
6秒前
夜月残阳完成签到,获得积分10
6秒前
moka完成签到 ,获得积分10
7秒前
7秒前
Selenaxue完成签到,获得积分10
7秒前
脑洞疼应助Quj采纳,获得10
7秒前
7秒前
tbb完成签到,获得积分10
8秒前
迅速海云完成签到,获得积分10
8秒前
JamesPei应助合适的乐儿采纳,获得10
8秒前
落寞的易绿完成签到,获得积分10
8秒前
Yolo完成签到,获得积分10
9秒前
典雅长颈鹿完成签到,获得积分10
9秒前
李小雪完成签到,获得积分10
10秒前
byron完成签到 ,获得积分10
10秒前
今后应助张氏采纳,获得10
11秒前
万幸鹿完成签到,获得积分10
11秒前
虚心三问发布了新的文献求助10
12秒前
12秒前
共享精神应助1231采纳,获得10
12秒前
yxy999发布了新的文献求助10
12秒前
alkaid33完成签到 ,获得积分10
13秒前
兜里面有怪兽完成签到,获得积分10
14秒前
hahaha完成签到,获得积分10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119112
求助须知:如何正确求助?哪些是违规求助? 4324929
关于积分的说明 13474611
捐赠科研通 4158140
什么是DOI,文献DOI怎么找? 2278807
邀请新用户注册赠送积分活动 1280560
关于科研通互助平台的介绍 1219303