Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小v1212采纳,获得10
刚刚
刚刚
科研通AI6应助zedzed采纳,获得10
1秒前
1秒前
冬虫夏草完成签到,获得积分10
1秒前
求助人员发布了新的文献求助30
2秒前
陈一会完成签到 ,获得积分10
2秒前
沉静的含海完成签到,获得积分20
2秒前
阿烨完成签到,获得积分10
4秒前
明理慕灵应助zzy采纳,获得10
5秒前
熊猫海发布了新的文献求助10
5秒前
Joseph_sss完成签到 ,获得积分10
6秒前
roro熊发布了新的文献求助10
6秒前
6秒前
光之霓裳完成签到 ,获得积分10
7秒前
彭于晏应助Azhe采纳,获得10
8秒前
8秒前
Zp发布了新的文献求助10
8秒前
Annie发布了新的文献求助10
9秒前
科研通AI6应助zedzed采纳,获得10
9秒前
华仔应助幸福台灯采纳,获得10
10秒前
俭朴舞仙完成签到,获得积分10
11秒前
慕容雅柏发布了新的文献求助10
14秒前
小恐龙飞飞完成签到 ,获得积分10
14秒前
熊猫海完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
深情安青应助sky采纳,获得10
19秒前
牙ya完成签到,获得积分20
19秒前
20秒前
刘威琦完成签到,获得积分10
20秒前
Azhe发布了新的文献求助10
20秒前
田様应助明理慕灵采纳,获得10
21秒前
壮观梦易发布了新的文献求助10
22秒前
星辰大海应助nature通行证采纳,获得10
23秒前
归尘发布了新的文献求助10
23秒前
24秒前
24秒前
小小K发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281