Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助wzc采纳,获得10
刚刚
无极微光应助YJY采纳,获得20
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
itharmony应助默问采纳,获得10
2秒前
陈陈陈皮完成签到,获得积分10
2秒前
飞舞的青鱼完成签到,获得积分10
2秒前
英俊的铭应助平淡映易采纳,获得10
3秒前
大个应助FANCY采纳,获得10
3秒前
李江涛发布了新的文献求助10
3秒前
孤独的夏青完成签到,获得积分10
3秒前
123123完成签到,获得积分10
4秒前
高斯发布了新的文献求助10
4秒前
无花果应助王碱采纳,获得10
4秒前
鲤鱼翼完成签到 ,获得积分10
5秒前
5秒前
5秒前
常乐的大宝剑完成签到,获得积分10
5秒前
5秒前
cui发布了新的文献求助10
5秒前
科研通AI6应助XuNan采纳,获得30
6秒前
失眠水风发布了新的文献求助10
6秒前
华仔应助yangling0124采纳,获得10
6秒前
6秒前
小强123发布了新的文献求助10
6秒前
qingmoheng应助药药55采纳,获得10
6秒前
研友_nvGWwZ发布了新的文献求助10
7秒前
7秒前
无情寒珊完成签到,获得积分10
7秒前
科目三应助孤独的蚂蚁采纳,获得10
7秒前
懒洋洋发布了新的文献求助10
8秒前
HAOHAO发布了新的文献求助10
8秒前
彼得驳回了今后应助
8秒前
8秒前
傲慢完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401