Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好晒发布了新的文献求助10
1秒前
3秒前
勤奋旭尧完成签到,获得积分10
3秒前
忧郁如柏完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
高贵觅风发布了新的文献求助30
7秒前
7秒前
水果完成签到,获得积分10
8秒前
化学小学生给化学小学生的求助进行了留言
8秒前
郁金香发布了新的文献求助10
9秒前
小如要努力完成签到,获得积分10
10秒前
汪宇发布了新的文献求助10
10秒前
CipherSage应助畅快的冷安采纳,获得10
10秒前
11秒前
小古完成签到,获得积分10
11秒前
dlwlrma发布了新的文献求助10
12秒前
Renaissance完成签到 ,获得积分10
12秒前
12秒前
辣椒完成签到 ,获得积分10
12秒前
无心的小霸王完成签到 ,获得积分10
12秒前
yjy123发布了新的文献求助10
13秒前
MrWang完成签到,获得积分10
14秒前
chenzhi发布了新的文献求助10
15秒前
BowieHuang应助LONGzhi采纳,获得10
16秒前
16秒前
赵一完成签到,获得积分10
16秒前
科研通AI6.1应助通~采纳,获得10
16秒前
赘婿应助XylonYu采纳,获得10
17秒前
18秒前
天天快乐应助Mcarry采纳,获得10
20秒前
齐小齐完成签到,获得积分10
20秒前
糖醋里脊加醋完成签到,获得积分10
20秒前
懦弱的易绿完成签到,获得积分10
21秒前
烟花应助chenzhi采纳,获得10
21秒前
xuan给xuan的求助进行了留言
21秒前
kdfdds发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722