Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
honhu753完成签到,获得积分10
1秒前
上官若男应助阿元采纳,获得10
2秒前
2秒前
2秒前
2秒前
充电宝应助冷艳的孤晴采纳,获得10
2秒前
力劈华山完成签到,获得积分10
2秒前
青春梦完成签到,获得积分0
3秒前
3秒前
王俊发布了新的文献求助20
3秒前
李lxq发布了新的文献求助10
3秒前
十六籽籽发布了新的文献求助30
3秒前
3秒前
4秒前
彭于晏应助mamahaha采纳,获得10
4秒前
隐形曼青应助Susan采纳,获得10
4秒前
浮游应助现代的乐松采纳,获得10
4秒前
4秒前
球子哇咔咔完成签到 ,获得积分10
4秒前
想人陪的雨泽完成签到 ,获得积分10
4秒前
4秒前
想读博的圆圆脸完成签到,获得积分20
4秒前
Hello应助SXM采纳,获得10
4秒前
5秒前
5秒前
phhh完成签到,获得积分10
5秒前
Lucas应助神勇的女孩采纳,获得10
5秒前
英俊的铭应助DODO采纳,获得10
6秒前
自行车v发布了新的文献求助10
6秒前
彭于晏应助东方三问采纳,获得10
6秒前
王晓蕾发布了新的文献求助10
6秒前
6秒前
早起完成签到,获得积分20
6秒前
Blue发布了新的文献求助10
6秒前
搜集达人应助行者采纳,获得10
7秒前
传奇3应助高挑的幼翠采纳,获得10
7秒前
LIUYC完成签到,获得积分10
7秒前
niuma发布了新的文献求助10
7秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238364
求助须知:如何正确求助?哪些是违规求助? 4405962
关于积分的说明 13712456
捐赠科研通 4274323
什么是DOI,文献DOI怎么找? 2345561
邀请新用户注册赠送积分活动 1342588
关于科研通互助平台的介绍 1300579