Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助guozizi采纳,获得10
刚刚
善学以致用应助李ny采纳,获得30
1秒前
yohu发布了新的文献求助10
2秒前
jingling完成签到,获得积分10
2秒前
Ariel完成签到,获得积分20
2秒前
Owen应助niko采纳,获得10
2秒前
Emily发布了新的文献求助10
3秒前
微笑代荷发布了新的文献求助10
3秒前
3秒前
小二郎应助安静海云采纳,获得10
3秒前
wanci应助mu采纳,获得10
4秒前
dabuguoni发布了新的文献求助10
4秒前
万能图书馆应助後知後孓采纳,获得10
4秒前
无花果应助科研执修采纳,获得10
4秒前
李健的小迷弟应助123采纳,获得10
4秒前
领导范儿应助单纯的凡雁采纳,获得10
5秒前
5秒前
5秒前
amll完成签到 ,获得积分10
5秒前
better_zjg关注了科研通微信公众号
6秒前
熬夜猫完成签到,获得积分10
7秒前
认真以寒发布了新的文献求助10
7秒前
万能图书馆应助lyh采纳,获得10
8秒前
8秒前
小二郎应助99采纳,获得10
8秒前
漂亮糖豆完成签到 ,获得积分10
8秒前
学习鱼发布了新的文献求助10
8秒前
小明发布了新的文献求助10
8秒前
Tail发布了新的文献求助10
8秒前
小猫多鱼完成签到,获得积分10
8秒前
MrFamous完成签到,获得积分10
9秒前
饭饭完成签到,获得积分10
9秒前
9秒前
9秒前
所所应助zyyyy采纳,获得10
10秒前
如意的尔蝶完成签到,获得积分10
10秒前
隐形曼青应助Syyyy采纳,获得10
10秒前
10秒前
10秒前
阿湛发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123