Induction and separation of motion artifacts in EEG data using a mobile phantom head device

成像体模 脑电图 计算机科学 主管(地质) 人工智能 分离(统计) 运动(物理) 计算机视觉 物理 光学 神经科学 机器学习 心理学 地貌学 地质学
作者
Anderson Souza Oliveira,Bryan R. Schlink,W. David Hairston,Peter König,Daniel P. Ferris
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036014-036014 被引量:100
标识
DOI:10.1088/1741-2560/13/3/036014
摘要

Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%–700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zywzyw完成签到,获得积分10
1秒前
1秒前
又又完成签到 ,获得积分10
1秒前
君尧关注了科研通微信公众号
2秒前
1101592875应助阳佟仇天采纳,获得10
2秒前
执着蓝完成签到,获得积分20
2秒前
bjx发布了新的文献求助10
2秒前
DreamSeker8发布了新的文献求助10
2秒前
3秒前
精明一寡发布了新的文献求助10
3秒前
myheat发布了新的文献求助10
3秒前
希望天下0贩的0应助bingyv采纳,获得10
3秒前
白衣卿相发布了新的文献求助10
4秒前
4秒前
大胆白凝发布了新的文献求助10
4秒前
4秒前
花灯王子发布了新的文献求助10
4秒前
5秒前
5秒前
ww完成签到 ,获得积分10
5秒前
魏家乐发布了新的文献求助10
5秒前
共享精神应助稳重的雅绿采纳,获得10
5秒前
桐桐应助li采纳,获得10
5秒前
hellojwx完成签到,获得积分10
6秒前
NexusExplorer应助isabelwy采纳,获得10
7秒前
烂漫纲完成签到,获得积分10
7秒前
嘎嘎完成签到,获得积分10
7秒前
L1995完成签到,获得积分10
7秒前
7秒前
7秒前
11完成签到,获得积分10
7秒前
爆米花应助梦想里采纳,获得10
7秒前
8秒前
8秒前
CeciliaLee发布了新的文献求助10
8秒前
9秒前
闪闪的正豪完成签到,获得积分10
9秒前
myheat完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836