一氧化氮合酶
一氧化氮
炎症
肿瘤坏死因子α
药理学
促炎细胞因子
化学
活性氧
六烯酸
阿霉素
生物化学
作者
Zhi-Quan Wang,Man-Tian Chen,Rui Zhang,Yi Zhang,Wei Li,Yi-Gang Li
出处
期刊:Journal of Cardiovascular Pharmacology
[Ovid Technologies (Wolters Kluwer)]
日期:2016-04-01
卷期号:67 (4): 283-289
被引量:26
标识
DOI:10.1097/fjc.0000000000000350
摘要
Doxorubicin (DOX) is a widely used antineoplastic agent for a variety of carcinomas. However, it is cardiotoxic and leads to cardiomyopathy. Previous studies have indicated that omega-3 polyunsaturated acids (ω-3 PUFAs) have therapeutic effects on dilated and diabetic cardiomyopathies. However, whether ω-3 PUFAs exert therapeutic effects on DOX-induced cardiomyopathy remains unclear. In this study, we explored the effect and underlying mechanisms of docosahexaenoic acid (DHA), an important type of ω-3 PUFA, on DOX-induced cardiotoxicity and inflammation. H9C2 cardiac cells were exposed to DOX (5 μM) and interfered with by DHA (10 μM) for 4 hours. The effect of DHA on H9C2 cell viability was measured by Cell Counting Kit-8 assay. The levels of mRNA and protein expression of inflammatory cytokines were determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Reactive oxygen species and nitric oxide (NO) levels were determined by corresponding kits. The protein expression of key molecules in the nuclear factor-kappa B/inducible isoform of nitric oxide synthase/nitric oxide (NF-κB/iNOS/NO) signaling pathway was determined by western blotting. DOX-induced significant cytotoxicity and reactive oxygen species production in H9C2 cardiac cells. It also induced cardiac inflammation as evidenced by significantly increased expressions of inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemoattractant protein-1, and inducible isoform of NO synthase. However, DHA effectively attenuated DOX-induced cytotoxicity and inflammation. A further mechanistic study revealed that DHA suppressed DOX-induced activation of the NF-κB/iNOS/NO signaling pathway in H9C2 cells. Our results indicate that DHA may protect against DOX-induced cardiotoxicity by inhibiting NF-κB/iNOS/NO signaling pathway activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI