Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling

电解质 扩散 蒙特卡罗方法 脉冲场梯度 化学 反向 离子 表征(材料科学) 离子键合 分析化学(期刊) 热力学 材料科学 电极 物理 数学 物理化学 统计 色谱法 几何学 纳米技术 有机化学
作者
Athinthra Krishnaswamy Sethurajan,Sergey A. Krachkovskiy,Ion C. Halalay,Gillian R. Goward,Bartosz Protas
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:119 (37): 12238-12248 被引量:81
标识
DOI:10.1021/acs.jpcb.5b04300
摘要

We used NMR imaging (MRI) combined with data analysis based on inverse modeling of the mass transport problem to determine ionic diffusion coefficients and transference numbers in electrolyte solutions of interest for Li-ion batteries. Sensitivity analyses have shown that accurate estimates of these parameters (as a function of concentration) are critical to the reliability of the predictions provided by models of porous electrodes. The inverse modeling (IM) solution was generated with an extension of the Planck-Nernst model for the transport of ionic species in electrolyte solutions. Concentration-dependent diffusion coefficients and transference numbers were derived using concentration profiles obtained from in situ (19)F MRI measurements. Material properties were reconstructed under minimal assumptions using methods of variational optimization to minimize the least-squares deviation between experimental and simulated concentration values with uncertainty of the reconstructions quantified using a Monte Carlo analysis. The diffusion coefficients obtained by pulsed field gradient NMR (PFG-NMR) fall within the 95% confidence bounds for the diffusion coefficient values obtained by the MRI+IM method. The MRI+IM method also yields the concentration dependence of the Li(+) transference number in agreement with trends obtained by electrochemical methods for similar systems and with predictions of theoretical models for concentrated electrolyte solutions, in marked contrast to the salt concentration dependence of transport numbers determined from PFG-NMR data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助June采纳,获得10
1秒前
liusha发布了新的文献求助10
2秒前
Hello应助mira采纳,获得10
4秒前
5秒前
科研通AI6应助小易采纳,获得10
6秒前
lxt完成签到,获得积分10
8秒前
10秒前
10秒前
怜然关注了科研通微信公众号
12秒前
情怀应助李杰采纳,获得10
14秒前
所所应助天天开心采纳,获得10
14秒前
初一发布了新的文献求助10
14秒前
赘婿应助万松辉采纳,获得10
14秒前
15秒前
ysws完成签到,获得积分10
16秒前
Orange应助乐观的颦采纳,获得10
16秒前
完美世界应助June采纳,获得10
18秒前
19秒前
19秒前
闪闪完成签到,获得积分10
21秒前
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
21秒前
所所应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得20
22秒前
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
慎默应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
冷酷夏真完成签到 ,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073