Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes

电池(电) 淡出 电气工程 储能 电压 阴极 工程物理 电信 环境科学 材料科学 纳米技术 计算机科学 工程类 物理 冶金 功率(物理) 操作系统 量子力学
作者
Jason R. Croy,Mahalingam Balasubramanian,Kevin G. Gallagher,Anthony K. Burrell
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (11): 2813-2821 被引量:212
标识
DOI:10.1021/acs.accounts.5b00277
摘要

The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.1 The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure-property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水溶c100发布了新的文献求助10
1秒前
ren关注了科研通微信公众号
2秒前
Ava应助Stardust采纳,获得10
3秒前
桐桐应助十九岁的时差采纳,获得10
3秒前
3秒前
4秒前
研究生完成签到,获得积分10
4秒前
自觉的凛发布了新的文献求助10
5秒前
所所应助开灯人和关灯人采纳,获得10
5秒前
讨厌科研发布了新的文献求助10
6秒前
快乐一江发布了新的文献求助10
6秒前
8秒前
Tianling完成签到,获得积分0
9秒前
好吃鱼完成签到,获得积分10
9秒前
等一个晴天完成签到,获得积分10
12秒前
胡涂涂发布了新的文献求助10
14秒前
研友_VZG7GZ应助小赞采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
快乐一江完成签到,获得积分10
18秒前
19秒前
24秒前
啊标完成签到,获得积分10
24秒前
24秒前
水溶c100完成签到,获得积分10
25秒前
梨江鱼完成签到,获得积分10
25秒前
LcnTCM完成签到,获得积分10
25秒前
28秒前
maizhenpeng发布了新的文献求助10
29秒前
执着乐双发布了新的文献求助30
31秒前
小赞发布了新的文献求助10
31秒前
35秒前
39秒前
沈静完成签到,获得积分10
39秒前
41秒前
loski发布了新的文献求助10
41秒前
marina完成签到 ,获得积分20
42秒前
45秒前
时尚俊驰发布了新的文献求助10
45秒前
46秒前
文献发布了新的文献求助30
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173