Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes

电池(电) 淡出 电气工程 储能 电压 阴极 工程物理 电信 环境科学 材料科学 纳米技术 计算机科学 工程类 物理 冶金 功率(物理) 操作系统 量子力学
作者
Jason R. Croy,Mahalingam Balasubramanian,Kevin G. Gallagher,Anthony K. Burrell
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (11): 2813-2821 被引量:212
标识
DOI:10.1021/acs.accounts.5b00277
摘要

The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.1 The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure-property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huishoushen完成签到 ,获得积分10
刚刚
刚刚
思源应助紧张的紫文采纳,获得10
1秒前
ALL完成签到,获得积分10
2秒前
4秒前
赘婿应助xuqiansd采纳,获得10
4秒前
芝诺完成签到,获得积分10
4秒前
陈傲雪发布了新的文献求助10
4秒前
Dr发布了新的文献求助10
4秒前
宁少爷发布了新的文献求助10
5秒前
5秒前
彩彩完成签到,获得积分10
5秒前
阳光香水发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
9秒前
量子星尘发布了新的文献求助50
10秒前
10秒前
山楂卷关注了科研通微信公众号
10秒前
杨杨杨发布了新的文献求助30
11秒前
烟花应助奖品肉麻膏耶采纳,获得10
12秒前
指数爆炸发布了新的文献求助10
13秒前
mwzeng发布了新的文献求助10
13秒前
赘婿应助ziyiziyi采纳,获得10
13秒前
李慕溪发布了新的文献求助20
13秒前
JACKPAN完成签到,获得积分10
13秒前
西瓜妹发布了新的文献求助10
15秒前
科研通AI5应助身处人海采纳,获得10
16秒前
Hao完成签到,获得积分10
17秒前
酷波er应助陈傲雪采纳,获得10
17秒前
顺利的小懒猪完成签到 ,获得积分10
18秒前
一棵树莓给一棵树莓的求助进行了留言
18秒前
小蘑菇应助JACKPAN采纳,获得10
21秒前
YoroYoshi完成签到,获得积分10
23秒前
23秒前
23秒前
科研通AI5应助mwzeng采纳,获得10
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360