已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes

电池(电) 淡出 电气工程 储能 电压 阴极 工程物理 电信 环境科学 材料科学 纳米技术 计算机科学 工程类 物理 冶金 功率(物理) 操作系统 量子力学
作者
Jason R. Croy,Mahalingam Balasubramanian,Kevin G. Gallagher,Anthony K. Burrell
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (11): 2813-2821 被引量:212
标识
DOI:10.1021/acs.accounts.5b00277
摘要

The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.1 The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure-property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying818k完成签到 ,获得积分10
刚刚
千倾完成签到 ,获得积分10
刚刚
2秒前
所所应助研友_R2D2采纳,获得10
2秒前
JiangPro完成签到,获得积分10
5秒前
Shyee完成签到 ,获得积分10
6秒前
科研铁人完成签到 ,获得积分10
7秒前
DL完成签到,获得积分10
8秒前
宋芽芽u完成签到 ,获得积分10
9秒前
12秒前
王旭东完成签到 ,获得积分10
12秒前
青山完成签到 ,获得积分10
14秒前
范丞丞完成签到 ,获得积分10
14秒前
14秒前
耿宇航完成签到 ,获得积分10
15秒前
852应助felix采纳,获得10
17秒前
Liza发布了新的文献求助10
18秒前
科目三应助baiyixuan采纳,获得10
18秒前
陌小石完成签到 ,获得积分10
20秒前
20秒前
毛哥完成签到 ,获得积分10
23秒前
乌拉拉啦啦啦完成签到 ,获得积分10
24秒前
希望天下0贩的0应助张可采纳,获得10
25秒前
Liza完成签到,获得积分10
27秒前
断棍豪斯完成签到,获得积分10
28秒前
书文混四方完成签到 ,获得积分10
28秒前
光能使者完成签到,获得积分10
32秒前
wanci应助绿眼虫采纳,获得10
32秒前
鳗鱼凡波完成签到,获得积分10
33秒前
LU完成签到 ,获得积分10
34秒前
称心曼安完成签到 ,获得积分10
35秒前
鳗鱼凡波发布了新的文献求助10
36秒前
39秒前
41秒前
123应助浙江嘉兴采纳,获得20
41秒前
小波完成签到,获得积分10
41秒前
42秒前
42秒前
44秒前
张可发布了新的文献求助10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
APA handbook of health psychology, Volume 2: Clinical interventions and disease management in health psychology 1300
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294348
求助须知:如何正确求助?哪些是违规求助? 2930232
关于积分的说明 8445607
捐赠科研通 2602590
什么是DOI,文献DOI怎么找? 1420591
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643390