清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes

电池(电) 淡出 电气工程 储能 电压 阴极 工程物理 电信 环境科学 材料科学 计算机科学 工程类 物理 冶金 功率(物理) 操作系统 量子力学
作者
Jason R. Croy,Mahalingam Balasubramanian,Kevin G. Gallagher,Anthony K. Burrell
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:48 (11): 2813-2821 被引量:237
标识
DOI:10.1021/acs.accounts.5b00277
摘要

The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.1 The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure-property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助kukudou2采纳,获得10
20秒前
阿里完成签到,获得积分10
29秒前
30秒前
Fairy发布了新的文献求助10
33秒前
Sunny完成签到,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
2分钟前
伯劳发布了新的文献求助10
3分钟前
neversay4ever完成签到 ,获得积分10
3分钟前
计划完成签到,获得积分10
3分钟前
dalei001完成签到 ,获得积分10
4分钟前
li完成签到 ,获得积分10
4分钟前
Alisha完成签到,获得积分10
4分钟前
T723完成签到 ,获得积分10
4分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
悠树里完成签到,获得积分10
5分钟前
5分钟前
飘逸剑发布了新的文献求助10
5分钟前
无极2023完成签到 ,获得积分10
5分钟前
大个应助飘逸剑采纳,获得10
5分钟前
小马甲应助飞翔的企鹅采纳,获得20
6分钟前
6分钟前
taster发布了新的文献求助10
6分钟前
情怀应助taster采纳,获得10
6分钟前
7分钟前
7分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
7分钟前
静静完成签到,获得积分10
7分钟前
勤奋流沙完成签到 ,获得积分10
8分钟前
8分钟前
要减肥的春天完成签到,获得积分10
8分钟前
yong完成签到 ,获得积分10
9分钟前
万能图书馆应助1577采纳,获得10
9分钟前
9分钟前
1577发布了新的文献求助10
9分钟前
1577完成签到,获得积分10
9分钟前
wangermazi完成签到,获得积分0
9分钟前
独特的师完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364