Adaptive Morphological Filtering Method for Structural Fusion Restoration of Hyperspectral Images

计算机科学 人工智能 图像复原 计算机视觉 高光谱成像 结构元素 噪音(视频) 像素 模式识别(心理学) 聚类分析 图像处理 图像(数学) 数学形态学
作者
Yidan Teng,Ye Zhang,Yushi Chen,Chunli Ti
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 655-667 被引量:16
标识
DOI:10.1109/jstars.2015.2468593
摘要

Recovering hyperspectral image (HSI) from mixed noise degradation is a challenging and promising theme in remote sensing, particularly when stripes and deadlines exist in several contiguous bands. This paper proposes a HSI's restoration method making use of adaptive morphological filtering (AMF) and fusing structure information of an auxiliary color image. An adaptive structuring element (ASE) indicating morphological features of each pixel is generated through information fusion, to simultaneously remove the mixed noise and preserve fine spatial structures. This key technology contains three main steps. First, edges are extracted from the auxiliary image exploiting its color information; then, an edge-constraint growing algorithm is used to generate the clustering kernel; finally, the ASE is obtained via goal-guided k-means clustering. The ASE has extensive application value, for it can be an enhancing module for most filters-based restoration methods, to mitigate the structural damage due to the fixed mask. Among these methods, Gaussian filter for preprocessing and majority voting for postprocessing are introduced in this paper as representatives. In addition, the auxiliary image can be both visible image of multisensor and false RGB component of the undamaged bands of the HSI, so it is relatively available. Experiments on simulated and real data sets show obvious effects on denoising and destriping both subjectively and objectively. The advantage of ASE on structure details preserving, compared to conventional approaches, is clearly demonstrated. The application value of the proposed restoration frame and ASE is further proved through the decision-level postprocessing experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雅悦完成签到,获得积分10
刚刚
huco发布了新的文献求助10
刚刚
NexusExplorer应助明年今日采纳,获得20
刚刚
英俊的念寒完成签到,获得积分10
1秒前
负责太阳完成签到,获得积分10
1秒前
alho完成签到 ,获得积分10
1秒前
xly完成签到,获得积分10
1秒前
天天快乐应助在人间采纳,获得10
2秒前
redondo5完成签到,获得积分10
2秒前
2秒前
zeroicy完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
栗子完成签到,获得积分10
5秒前
FashionBoy应助coco采纳,获得10
5秒前
orixero应助zhuz采纳,获得10
5秒前
5秒前
Singularity应助IAMXC采纳,获得20
5秒前
6秒前
隐形的妙松完成签到,获得积分10
6秒前
辛勤的灵薇完成签到,获得积分10
6秒前
shen完成签到,获得积分10
6秒前
cuicui发布了新的文献求助10
7秒前
yaya发布了新的文献求助10
7秒前
7秒前
心灵美诗霜完成签到 ,获得积分10
7秒前
郭旗发布了新的文献求助10
8秒前
诺贝尔一直讲获得者完成签到 ,获得积分10
9秒前
redondo完成签到,获得积分10
9秒前
9秒前
majf完成签到,获得积分10
9秒前
马大翔完成签到,获得积分10
10秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
Gxx完成签到,获得积分10
11秒前
boom完成签到,获得积分10
11秒前
宋祝福完成签到 ,获得积分10
11秒前
山川完成签到,获得积分10
11秒前
皮皮虾完成签到,获得积分10
11秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142960
求助须知:如何正确求助?哪些是违规求助? 2793911
关于积分的说明 7808759
捐赠科研通 2450220
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601356