Noncovalent Interaction of Carbon Nanostructures

碳纳米管 非共价相互作用 石墨烯 生物分子 纳米技术 分子 化学 纳米结构 化学物理 碳纤维 手性(物理) 材料科学 物理 有机化学 氢键 夸克 复合材料 复合数 量子力学 手征对称破缺 Nambu–Jona Lasinio模型
作者
Deivasigamani Umadevi,Swati Panigrahi,G. Narahari Sastry
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2574-2581 被引量:164
标识
DOI:10.1021/ar500168b
摘要

ConspectusThe potential application of carbon nanomaterials in biology and medicine increases the necessity to understand the nature of their interactions with living organisms and the environment. The primary forces of interaction at the nano–bio interface are mostly noncovalent in nature. Quantifying such interactions and identifying various factors that influence such interactions is a question of outstanding fundamental interest in academia and industry.In this Account, we have summarized our recent studies in understanding the noncovalent interactions of carbon nanostructures (CNSs), which were obtained by employing first-principles calculations on various model systems representing carbon nanotubes (CNTs) and graphene. Bestowed with an extended sp2 carbon network, which is a common feature in all of these nanostructures, they exhibit π–π interactions with aromatic molecules (benzene, naphthalene, nucleobases, amino acids), cation−π type of interactions with metal ions, anion−π interactions with anions, and other XH···π type of interactions with various small molecules (H2O, NH3, CH4, H2, etc.). CNTs are wrapped-up forms of two-dimensional graphene, and hence, it is interesting to compare the binding abilities of these two allotropes that differ in their curvature. The chirality and curvature of CNSs appear to play a major role in determining the structural, energetic, and functional properties. Flat graphene shows stronger noncovalent interactions than the curved nanotubes toward various substrates.Understanding the interactions of CNSs with organic molecules and biomolecules has gained a great deal of research interest because of their potential applications in various fields. Aromatic hydrocarbons show a strong propensity to interact with CNSs via the π–π mode of interaction rather than CH···π interaction. As DNA sequencing appears to be one of the most important potential applications of carbon nanomaterials, the study of CNS–nucleobase interactions has become quite important. The nucleobases are physisorbed on the surface of CNSs in the order G > T ≈ A > C > U, exhibiting π–π-stacking type of interaction. These interactions become stronger as the curvature of the CNSs decreases. It is also indispensable to study the interaction of nanomaterials with proteins and especially with amino acids at a molecular level to understand the drug delivery mechanism of CNSs. We have shown that the CNSs interact with small molecules by means of physisorption and thus show potential for sensor applications. The prime requisite for the exploitation of these CNSs in nanoelectronics is the tunable energy gap. We have revealed that metal ion doping modulates the HOMO–LUMO energy gap of the nanotubes significantly and thus provides a handle to tune the electronic and conductivity properties of CNTs. Moreover, metal ions tend to selectively bind with nanotubes of different chirality such as armchair and zigzag nanotubes. The reduction of planar hydrocarbon materials by lithium atoms has also been studied very systematically. We also illustrate the way in which noncovalent interactions can be used to optimize and fine-tune the properties of CNSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江月年完成签到 ,获得积分10
刚刚
ZHANG_Kun完成签到 ,获得积分10
刚刚
bin0920完成签到,获得积分10
1秒前
2秒前
2秒前
cruise发布了新的文献求助10
2秒前
向日葵的Rui完成签到,获得积分10
2秒前
小xy发布了新的文献求助10
2秒前
3秒前
香蕉觅云应助青石采纳,获得10
3秒前
科目三应助yangyang采纳,获得10
3秒前
仄兀发布了新的文献求助10
3秒前
小小鱼发布了新的文献求助10
3秒前
孙成成完成签到 ,获得积分10
4秒前
ee完成签到,获得积分10
4秒前
刘德华完成签到,获得积分10
4秒前
Disci完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
帅气鹭洋发布了新的文献求助10
6秒前
夏昼发布了新的文献求助10
6秒前
cometx完成签到 ,获得积分10
7秒前
路之遥兮发布了新的文献求助10
7秒前
yy发布了新的文献求助10
7秒前
7秒前
852应助100采纳,获得10
7秒前
爱静静应助cruise采纳,获得10
8秒前
Singularity应助cruise采纳,获得10
8秒前
VDC应助cruise采纳,获得30
8秒前
8秒前
8秒前
了晨完成签到 ,获得积分10
9秒前
小xy完成签到,获得积分10
9秒前
10秒前
小昼完成签到 ,获得积分10
10秒前
尊敬的完成签到,获得积分10
11秒前
11秒前
整齐海秋完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678