Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 替代医学 病理 建筑工程 工程类
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
goldenfleece发布了新的文献求助10
1秒前
怕黑的钥匙完成签到 ,获得积分10
1秒前
zhangsf88完成签到,获得积分10
1秒前
科研通AI5应助科研小能手采纳,获得10
1秒前
乐乐应助热情芷荷采纳,获得10
2秒前
想发sci完成签到,获得积分10
2秒前
kaifeiQi完成签到,获得积分10
2秒前
共享精神应助Elsa采纳,获得10
2秒前
2秒前
Owen应助怎么可能会凉采纳,获得10
3秒前
小马甲应助ATAYA采纳,获得10
4秒前
溜溜发布了新的文献求助10
6秒前
6秒前
怕黑的钥匙关注了科研通微信公众号
6秒前
CipherSage应助小梁要加油采纳,获得10
7秒前
杰克发布了新的文献求助10
8秒前
liuq完成签到,获得积分10
9秒前
9秒前
12秒前
爱吃猫的鱼完成签到 ,获得积分10
12秒前
12秒前
哞哞完成签到,获得积分10
12秒前
颗粒完成签到,获得积分10
13秒前
13秒前
15秒前
Elsa完成签到,获得积分10
15秒前
15秒前
榴下晨光完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
章铭-111发布了新的文献求助10
16秒前
薪炭林应助su采纳,获得10
17秒前
am完成签到 ,获得积分10
17秒前
Hangerli发布了新的文献求助10
18秒前
Akim应助嘟嘟采纳,获得10
19秒前
19秒前
优雅铭完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808