Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BCS完成签到,获得积分10
1秒前
大模型应助独特的莫言采纳,获得10
1秒前
函花花发布了新的文献求助10
2秒前
2秒前
4秒前
发一篇Nature完成签到 ,获得积分10
4秒前
秦摆烂发布了新的文献求助10
5秒前
Ava应助陆千万采纳,获得10
6秒前
jxm发布了新的文献求助10
6秒前
lym97完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
10秒前
卡卡西应助科研通管家采纳,获得20
10秒前
利利应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
yookia应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
深情安青应助CCR采纳,获得10
11秒前
12秒前
唠叨的无极完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
搁浅完成签到,获得积分10
15秒前
16秒前
橘子sungua发布了新的文献求助10
17秒前
jiang完成签到 ,获得积分10
18秒前
18秒前
18秒前
荒漠发布了新的文献求助10
19秒前
脑洞疼应助游舒平采纳,获得30
19秒前
陆千万发布了新的文献求助10
20秒前
芋泥蛋糕完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150