Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
刚刚
赘婿应助77采纳,获得10
刚刚
单薄不惜完成签到,获得积分10
1秒前
77发布了新的文献求助10
2秒前
落雨发布了新的文献求助10
2秒前
2秒前
3秒前
斯文问旋完成签到,获得积分10
3秒前
lvsehx发布了新的文献求助10
3秒前
pophoo完成签到,获得积分10
3秒前
4秒前
ck完成签到,获得积分20
5秒前
cruise发布了新的文献求助10
5秒前
真实的语堂完成签到,获得积分10
5秒前
6秒前
开心青柏完成签到 ,获得积分10
7秒前
JamesPei应助聂国烽采纳,获得50
8秒前
研友_LMBa6n发布了新的文献求助10
8秒前
8秒前
乐乐应助TIANCAI采纳,获得10
9秒前
香菜掰掰关注了科研通微信公众号
11秒前
煎饼狗子发布了新的文献求助10
11秒前
犹豫的牛排完成签到,获得积分10
12秒前
77完成签到,获得积分10
12秒前
14秒前
111完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助诺诺采纳,获得10
16秒前
hujuan完成签到 ,获得积分10
18秒前
小二郎应助眯眯眼的惜芹采纳,获得10
19秒前
曾阿牛发布了新的文献求助10
19秒前
研友_LMBa6n发布了新的文献求助10
21秒前
22秒前
小明应助阳光羽毛采纳,获得10
23秒前
24秒前
曾阿牛完成签到,获得积分20
27秒前
27秒前
27秒前
28秒前
背后如雪发布了新的文献求助10
29秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972