Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
纯真的雨完成签到,获得积分10
1秒前
zjl发布了新的文献求助10
1秒前
不明完成签到 ,获得积分10
1秒前
1秒前
linlin发布了新的文献求助10
1秒前
Hakunaaa完成签到,获得积分10
2秒前
各方面发布了新的文献求助10
2秒前
1121应助奚门长海采纳,获得20
4秒前
等风的人发布了新的文献求助10
4秒前
4秒前
在水一方应助Moi采纳,获得10
5秒前
晨阳发布了新的文献求助10
5秒前
6秒前
胡俊豪发布了新的文献求助10
7秒前
科研通AI6.1应助可爱问旋采纳,获得10
8秒前
汉堡包应助左旋多巴采纳,获得10
8秒前
lizishu应助YangSY采纳,获得10
8秒前
linlin完成签到,获得积分10
8秒前
8秒前
9秒前
哈哈哈应助曹宇哲采纳,获得10
9秒前
9秒前
10秒前
等风的人完成签到,获得积分10
10秒前
jiajia完成签到,获得积分10
10秒前
11秒前
各方面完成签到,获得积分10
11秒前
qijie完成签到,获得积分10
11秒前
七仙女完成签到,获得积分10
12秒前
12秒前
茶米发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
开放香岚完成签到,获得积分10
13秒前
跳跃飞瑶完成签到,获得积分20
14秒前
Jialing发布了新的文献求助30
14秒前
小马甲应助诗谙采纳,获得10
14秒前
14秒前
15秒前
17完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677