Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助涵泽采纳,获得10
刚刚
深情安青应助jiqixi采纳,获得10
刚刚
浦老四发布了新的文献求助10
1秒前
1秒前
readhistory发布了新的文献求助10
1秒前
华仔应助三人行采纳,获得10
1秒前
Danboard完成签到,获得积分10
1秒前
Lizhuzhu完成签到,获得积分10
2秒前
火锅发布了新的文献求助10
2秒前
Yuanyuan发布了新的文献求助10
2秒前
年年年年完成签到,获得积分10
3秒前
4秒前
在水一方应助蜜桃奇迹采纳,获得10
5秒前
6秒前
7秒前
neil完成签到,获得积分10
7秒前
离歌完成签到,获得积分10
7秒前
7秒前
8秒前
刘欣桐完成签到 ,获得积分10
9秒前
zz完成签到,获得积分20
9秒前
隐形曼青应助FUNG采纳,获得10
9秒前
9秒前
10秒前
在水一方应助yy采纳,获得10
11秒前
hhh完成签到,获得积分10
12秒前
Mic发布了新的文献求助10
12秒前
勤劳的南露完成签到,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
小房子完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
淡定语发布了新的文献求助10
14秒前
丹佛发布了新的文献求助10
15秒前
humorlife完成签到,获得积分10
16秒前
dyfsj发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524549
求助须知:如何正确求助?哪些是违规求助? 4615137
关于积分的说明 14546433
捐赠科研通 4553077
什么是DOI,文献DOI怎么找? 2495132
邀请新用户注册赠送积分活动 1475734
关于科研通互助平台的介绍 1447514