Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
lsx发布了新的文献求助10
2秒前
dili发布了新的文献求助20
2秒前
2秒前
Akim应助富贵李采纳,获得10
2秒前
慕青应助bobo采纳,获得10
3秒前
鬼豆完成签到,获得积分10
3秒前
3秒前
老姚发布了新的文献求助10
4秒前
4秒前
我要向阳而生完成签到 ,获得积分10
4秒前
111完成签到,获得积分10
4秒前
5秒前
852应助乐观笑南采纳,获得10
5秒前
6秒前
6秒前
6秒前
浮游应助Percy采纳,获得10
6秒前
sswbzh应助xxsw采纳,获得200
7秒前
7秒前
lls发布了新的文献求助10
7秒前
wf0806发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
上官若男应助sqq采纳,获得10
9秒前
wangxw完成签到,获得积分10
9秒前
Li完成签到,获得积分20
9秒前
10秒前
11秒前
小小K发布了新的文献求助10
11秒前
动听葵阴发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
活在当下发布了新的文献求助10
13秒前
mingtian发布了新的文献求助10
13秒前
青山有别完成签到,获得积分10
14秒前
14秒前
当下最好发布了新的文献求助10
15秒前
17秒前
Zhi_S完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145