亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling

体素 分割 人工智能 计算机科学 模式识别(心理学) 磁共振成像 骨关节炎 接头(建筑物) 算法 医学 放射科 工程类 病理 建筑工程 替代医学
作者
Ceyda Nur Öztürk,Songül Albayrak
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:72: 90-107 被引量:22
标识
DOI:10.1016/j.compbiomed.2016.03.011
摘要

Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Nature_Science采纳,获得10
30秒前
46秒前
失眠幻灵发布了新的文献求助10
50秒前
56秒前
1分钟前
向前发布了新的文献求助10
1分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
1分钟前
Chris完成签到 ,获得积分10
1分钟前
冷眸完成签到,获得积分20
1分钟前
独特的念柏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
无限幻枫发布了新的文献求助10
1分钟前
Daria完成签到 ,获得积分10
1分钟前
小蘑菇应助MAXXIN采纳,获得10
1分钟前
无限幻枫完成签到,获得积分10
2分钟前
2分钟前
MAXXIN完成签到,获得积分20
2分钟前
Lucas应助xuanjiawu采纳,获得10
2分钟前
失眠幻灵完成签到 ,获得积分10
2分钟前
MAXXIN发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大胆的时光完成签到 ,获得积分10
2分钟前
2分钟前
xuanjiawu发布了新的文献求助10
2分钟前
Ahan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
隐形曼青应助keke采纳,获得10
2分钟前
2分钟前
天才幸运鱼完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
一天完成签到 ,获得积分10
3分钟前
keke发布了新的文献求助10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606566
求助须知:如何正确求助?哪些是违规求助? 4691039
关于积分的说明 14866783
捐赠科研通 4707575
什么是DOI,文献DOI怎么找? 2542899
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276