独特性
孔力学
比奥数
多孔介质
数学
集合(抽象数据类型)
数学分析
接口(物质)
牙石(牙科)
应用数学
多孔性
机械
计算机科学
物理
地质学
岩土工程
医学
牙科
气泡
最大气泡压力法
程序设计语言
作者
H. Deresiewicz,Richard Skalak
标识
DOI:10.1785/bssa0530040783
摘要
Abstract Conditions are derived sufficient for uniqueness of solution of the field equations of Biot's theory of liquid-filled porous media, particular attention being paid to continuity requirements at an interface between two such dissimilar materials. It is found that at an interface two distinct sets of conditions will satisfy the demands of the mathematical uniqueness theorem, one of them being discarded on physical grounds. The permissible set is then discussed in relation to a number of possible models of the structure of a pair of elements in contact. The special cases of an impermeable elastic solid or a liquid medium in contact with a saturated porous solid are also examined.
科研通智能强力驱动
Strongly Powered by AbleSci AI