Adaptive Optics to Counteract Thermal Aberrations: System Design for EUV-Lithography with Sub-nm Precision

极紫外光刻 波前 光学 材料科学 平版印刷术 极端紫外线 物理 光电子学 自适应光学 波前传感器 激光器
作者
Rudolf Saathof
标识
DOI:10.4233/uuid:1d71e3e8-88ce-4260-aeda-af0ee7675445
摘要

In highly precise systems the thermal expansion of system-parts is of increasing concern, since it can severely compromise its performance at sub-nanometre level. An example of such a system is an Extreme UltraViolet (EUV)-lithography machine that is used in the semi-conductor industry to project the pattern of the chip onto a silicon wafer. In order to increase the functionality of the chips, the resolution of lithography machines improved by decreasing the wavelength to EUV of 13.5 nm. Because of the high absorption of EUV-light the projection optics consists of mirrors that have a special coating. Unfortunately it significantly absorbs the EUV-light, causing the mirrors to heat up and therefore deform, resulting in a WaveFront Error (WFE) that evolves over time. To estimate this effect a model of the EUV-projection optical system is obtained that describes the opto-thermo-elastic behaviour. It showed a deformation of 2 nm Root Mean Square (RMS) with spatial frequencies with 2 periods over the pupil, while the allowable residual WaveFront Error is 0.33 nm RMS. In order to counteract these WFEs an Adaptive Optics system is proposed, consisting of a sensor that measures the wavefront, control algorithms that determine the control action based on the sensor signal and an Active Mirror that thermally compensates and corrects for the WFEs by modifying the thermal profile and shape of the reflective surface. The system modelling results form a set of requirements which needs to be fulfilled by this Adaptive Optics (AO)-system. The key differences with conventional Adaptive Optics systems are the precision of the correction, being 2 to 3 orders of magnitude better than conventional systems, the time constants that are significant longer, the restriction of sparsely available sensor information and the aberrations that are generated inside the optical system, instead of outside. The proposed Adaptive Optics-strategy is mainly based on the on-line model based prediction of the thermal aberrations. This prediction is updated with sensor information that is acquired every 30 s, which is the time between two wafer exchange procedures. Based on the prediction, one or more Active Mirrors are being controlled to correct for these WFEs. The principle of the Active Mirror is as following. When a mirror has a uniform temperature, there is no thermal deformation. Therefore, the Active Mirror is exposed to a (thermal) irradiance-profile opposing the predicted heat-load. This principle is referred to as compensation aspect. For correcting the thermal aberrations of the other mirrors in the system, the thermal expansion of the mirror substrate is used, which is referred to as correction aspect. The thermal profile to cause this expansion is provided by the exposure of the correcting irradiance-profile. These two irradiance-profiles are superimposed and exposed from the back of the mirror, so this irradiance travels through the mirror substrate. This irradiance is absorbed by using a special coating, which is deposited on the mirror substrate underneath the reflective coating, and the exposure profile is provided by a video projector. The big advantage of this actuation principle is that the only addition to an EUV-mirror is the absorptive coating, which can be easily implemented in the current production process. Although a projection device needs to be added to the EUV-lithography machine, which needs the sparsely available space, this addition is less critical in terms of precision. In order to verify the Active Mirror on the requirements, six aspects are experimentally validated using an experimental set-up, which realisation and validation became a part of the PhD project. This experimental set-up consists of a Michelson interferometer that has 0.1 nm resolution, which is sufficiently accurate to validate the Active Mirror (AM). The AM consists of a 50×50×4mmBK7 substrate and is prepared as described above. First it is proven that the Active Mirror behaves linearly, by using the formal definition of linearity. Second, the Instrument Transfer Function is obtained, that shows that the amplitude and the time constant are both inversely quadratic proportional to the number of exposed periods on the mirror. Third, the absorptive coating is applied to a sample substrate in combination with the EUV-Multi-Layer-coating. It turns out that the reflectivity of EUV-light of this sample is only 44% instead of the maximum attainable 70%, indicating that the deposition process of the absorptive coating must be optimised. Fourth, irradiance profiles are obtained for creating basic shapes, known as Zernike polynomials, that can be superimposed to obtain a desired surface shape, which is better known as the modal approach. Fifth, to prove the viability of closed loop control, the zonal approach is used, realised by partitioning the mirror surface in sectors and provide feed-forward and feedback control on these sectors. Sixth, the precision of the Active Mirror is fulfilling the requirements: while being actively deformed, the Root Mean Square-deviation did not exceed the 0.33 nm during 17 s; the amplitude of the difference between a modelled deformation and a measured deformation was less than 10% of the amplitude of the deformation; by repeating the experiment the RMS difference did not exceed 0.17 nm. Five of these six aspects are validated for a BK7 mirror substrate, but these results can be extrapolated for other materials. For the Active Mirror in EUV-lithography, the substrate is proposed to be fused silica, which has a 16 times less thermal expansion. Because the requirements are fulfilled by the BK7 substrate, they certainly will be fulfilled by fused silica, while keeping a certain safety margin. Therefore, the over-all conclusion of the thesis is that the thermal induced WaveFront Errors can be counteracted using the counteracting strategy and the AM that are presented in this thesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鲨鲨鱼完成签到,获得积分10
2秒前
李爱国应助WUWU2435采纳,获得10
2秒前
3秒前
@你。发布了新的文献求助10
4秒前
大白发布了新的文献求助10
4秒前
pjm发布了新的文献求助10
5秒前
MMTI完成签到,获得积分10
5秒前
麕麕完成签到 ,获得积分10
5秒前
6秒前
6秒前
yes完成签到,获得积分10
6秒前
三金完成签到,获得积分10
7秒前
7秒前
赖林完成签到,获得积分10
7秒前
blue应助ardejiang采纳,获得20
8秒前
走之儿完成签到,获得积分10
10秒前
大椒完成签到 ,获得积分10
11秒前
11秒前
pjm完成签到,获得积分20
11秒前
12秒前
张书源完成签到 ,获得积分10
12秒前
鎏祈完成签到 ,获得积分10
12秒前
烟花应助大白采纳,获得10
14秒前
Dejavue发布了新的文献求助10
16秒前
catch完成签到,获得积分10
16秒前
Zhai发布了新的文献求助10
17秒前
19秒前
这次会赢吗完成签到,获得积分10
19秒前
kirto完成签到,获得积分10
21秒前
an完成签到,获得积分10
21秒前
踏实十八发布了新的文献求助10
21秒前
刘梓应助眼睛大天思采纳,获得20
21秒前
努力加油煤老八完成签到 ,获得积分0
21秒前
刘佳完成签到 ,获得积分10
23秒前
sinlar发布了新的文献求助10
23秒前
Dejavue完成签到,获得积分10
24秒前
24秒前
SciGPT应助七七采纳,获得10
26秒前
张六六发布了新的文献求助10
26秒前
YXYYXY完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641