Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling

交叉熵 支持向量机 计算机科学 熵(时间箭头) 样本熵 估计员 可靠性工程 工程类 机器学习 人工智能 最大熵原理 模式识别(心理学) 数学 统计 量子力学 物理
作者
Xiao Hu,Jiuchun Jiang,Dongpu Cao,Bo Egardt
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:478
标识
DOI:10.1109/tie.2015.2461523
摘要

Battery health monitoring and management is of extreme importance for the performance and cost of electric vehicles. This paper is concerned with machine-learning-enabled battery state-of-health (SOH) indication and prognosis. The sample entropy of short voltage sequence is used as an effective signature of capacity loss. Advanced sparse Bayesian predictive modeling (SBPM) methodology is employed to capture the underlying correspondence between the capacity loss and sample entropy. The SBPM-based SOH monitor is compared with a polynomial model developed in our prior work. The proposed approach allows for an analytical integration of temperature effects such that an explicitly temperature-perspective SOH estimator is established, whose performance and complexity is contrasted to the support vector machine (SVM) scheme. The forecast of remaining useful life is also performed via a combination of SBPM and bootstrap sampling concepts. Large amounts of experimental data from multiple lithium-ion battery cells at three different temperatures are deployed for model construction, verification, and comparison. Such a multi-cell setting is more useful and valuable than only considering a single cell (a common scenario). This is the first known application of combined sample entropy and SBPM to battery health prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助细腻的夜天采纳,获得10
1秒前
Hello应助小岛采纳,获得10
1秒前
hellosteve0430完成签到,获得积分10
1秒前
李彬发布了新的文献求助10
1秒前
2秒前
nini完成签到,获得积分10
2秒前
3秒前
Akim应助Hyunstar采纳,获得10
5秒前
情怀应助dara997采纳,获得10
6秒前
李爱国应助缥缈的机器猫采纳,获得10
6秒前
lxd完成签到,获得积分10
6秒前
8秒前
幽默服饰完成签到,获得积分10
9秒前
9秒前
七七发布了新的文献求助10
9秒前
踏实博超发布了新的文献求助10
9秒前
9秒前
爆米花应助桑梓采纳,获得10
10秒前
10秒前
10秒前
10秒前
leodu发布了新的文献求助10
11秒前
细腻的夜天完成签到,获得积分10
11秒前
fddf完成签到,获得积分10
12秒前
开心的BILL发布了新的文献求助10
12秒前
CCCCCC完成签到,获得积分10
12秒前
13秒前
玉玉鼠发布了新的文献求助10
13秒前
姑苏老李发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
渣渣发布了新的文献求助10
16秒前
15327432191完成签到,获得积分10
16秒前
16秒前
幽默的南蕾完成签到,获得积分10
16秒前
Hyunstar发布了新的文献求助10
16秒前
16秒前
ECHO完成签到,获得积分10
16秒前
17秒前
lzh完成签到 ,获得积分10
17秒前
李佳发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416