Reoptimization of MDL Keys for Use in Drug Discovery

修剪 基础(线性代数) 集合(抽象数据类型) 最小描述长度 还原(数学) 相似性(几何) 计算机科学 选择(遗传算法) 模式识别(心理学) 数学 人工智能 聚类分析 算法 几何学 农学 图像(数学) 生物 程序设计语言
作者
Joseph L. Durant,Burton A. Leland,Douglas R. Henry,James G. Nourse
出处
期刊:Journal of Chemical Information and Computer Sciences [American Chemical Society]
卷期号:42 (6): 1273-1280 被引量:1508
标识
DOI:10.1021/ci010132r
摘要

For a number of years MDL products have exposed both 166 bit and 960 bit keysets based on 2D descriptors. These keysets were originally constructed and optimized for substructure searching. We report on improvements in the performance of MDL keysets which are reoptimized for use in molecular similarity. Classification performance for a test data set of 957 compounds was increased from 0.65 for the 166 bit keyset and 0.67 for the 960 bit keyset to 0.71 for a surprisal S/N pruned keyset containing 208 bits and 0.71 for a genetic algorithm optimized keyset containing 548 bits. We present an overview of the underlying technology supporting the definition of descriptors and the encoding of these descriptors into keysets. This technology allows definition of descriptors as combinations of atom properties, bond properties, and atomic neighborhoods at various topological separations as well as supporting a number of custom descriptors. These descriptors can then be used to set one or more bits in a keyset. We constructed various keysets and optimized their performance in clustering bioactive substances. Performance was measured using methodology developed by Briem and Lessel. "Directed pruning" was carried out by eliminating bits from the keysets on the basis of random selection, values of the surprisal of the bit, or values of the surprisal S/N ratio of the bit. The random pruning experiment highlighted the insensitivity of keyset performance for keyset lengths of more than 1000 bits. Contrary to initial expectations, pruning on the basis of the surprisal values of the various bits resulted in keysets which underperformed those resulting from random pruning. In contrast, pruning on the basis of the surprisal S/N ratio was found to yield keysets which performed better than those resulting from random pruning. We also explored the use of genetic algorithms in the selection of optimal keysets. Once more the performance was only a weak function of keyset size, and the optimizations failed to identify a single globally optimal keyset. Instead multiple, equally optimal keysets could be produced which had relatively low overlap of the descriptors they encoded.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耀阳发布了新的文献求助10
1秒前
Orange应助渣渣辉采纳,获得10
2秒前
zz完成签到,获得积分10
3秒前
5秒前
Jasper应助傲娇的曼香采纳,获得10
5秒前
5秒前
滚雪球的Dr Gao完成签到 ,获得积分10
6秒前
清秀的不言完成签到 ,获得积分10
6秒前
ljw完成签到,获得积分20
6秒前
写得出发的中完成签到,获得积分10
7秒前
7秒前
单一完成签到,获得积分10
11秒前
KAKA发布了新的文献求助10
13秒前
13秒前
Salt发布了新的文献求助10
13秒前
14秒前
Xangel发布了新的文献求助30
15秒前
xlj730227完成签到 ,获得积分10
16秒前
优雅的莫英关注了科研通微信公众号
16秒前
Lxx发布了新的文献求助10
17秒前
派大星完成签到,获得积分10
17秒前
18秒前
麦子发布了新的文献求助10
19秒前
xiao_J完成签到,获得积分10
21秒前
23秒前
西安浴日光能赵炜完成签到,获得积分10
24秒前
jwliu发布了新的文献求助10
26秒前
羊羊完成签到,获得积分10
27秒前
SciGPT应助宁学者采纳,获得10
28秒前
邱丘邱发布了新的文献求助15
28秒前
乔柯发布了新的文献求助10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
研友_ngkyGn应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得30
32秒前
你的风筝应助科研通管家采纳,获得10
32秒前
小马甲应助科研通管家采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075