压缩传感
先验概率
贝叶斯概率
计算机科学
算法
事先信息
拉普拉斯分布
建设性的
信号(编程语言)
拉普拉斯变换
贪婪算法
人工智能
数学优化
模式识别(心理学)
数学
过程(计算)
数学分析
程序设计语言
操作系统
作者
S. Derin Babacan,Rafael Molina,Aggelos K. Katsaggelos
标识
DOI:10.1109/icassp.2009.4960223
摘要
In this paper we model the components of the compressive sensing (CS) problem using the Bayesian framework by utilizing a hierarchical form of the Laplace prior to model sparsity of the unknown signal. This signal prior includes some of the existing models as special cases and achieves a high degree of sparsity. We develop a constructive (greedy) algorithm resulting from this formulation where necessary parameters are estimated solely from the observation and therefore no user-intervention is needed. We provide experimental results with synthetic 1D signals and images, and compare with the state-of-the-art CS reconstruction algorithms demonstrating the superior performance of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI