Surface-Accelerated String Method for Locating Minimum Free Energy Paths

计算机科学 弦(物理) 能量(信号处理) 曲面(拓扑) 物理 理论物理学 数学 几何学 量子力学
作者
Timothy J. Giese,Şölen Ekesan,Erika McCarthy,Yujun Tao,Darrin M. York
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.3c01401
摘要

We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆发布了新的文献求助10
刚刚
所所应助伯赏夜南采纳,获得10
刚刚
1秒前
Orange应助冷酷的尔琴采纳,获得10
1秒前
英姑应助从容问雁采纳,获得10
1秒前
1秒前
暖秋发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
原野小年完成签到,获得积分10
3秒前
稳重蜗牛完成签到,获得积分10
3秒前
帅气书白完成签到,获得积分10
4秒前
edtaa发布了新的文献求助10
4秒前
DamonChen发布了新的文献求助10
4秒前
无心的砖家完成签到,获得积分10
4秒前
落后十八发布了新的文献求助20
4秒前
sheep完成签到,获得积分10
4秒前
SciGPT应助雨雨雨采纳,获得10
5秒前
直率诗柳完成签到,获得积分10
5秒前
刚国忠完成签到,获得积分20
5秒前
屈昭阳完成签到,获得积分20
5秒前
Lawenced发布了新的文献求助10
6秒前
何文发布了新的文献求助10
7秒前
尤寄风发布了新的文献求助10
7秒前
悬夜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
Sunny完成签到 ,获得积分10
10秒前
11秒前
每天一篇文献的小王完成签到 ,获得积分10
11秒前
一十六完成签到,获得积分10
11秒前
aikeyan完成签到,获得积分10
11秒前
我是老大应助L山间葱采纳,获得10
12秒前
12秒前
波风水门pxf完成签到,获得积分10
12秒前
小俊完成签到,获得积分10
13秒前
悬夜完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836