Surface-Accelerated String Method for Locating Minimum Free Energy Paths

计算机科学 弦(物理) 能量(信号处理) 曲面(拓扑) 物理 理论物理学 数学 几何学 量子力学
作者
Timothy J. Giese,Şölen Ekesan,Erika McCarthy,Yujun Tao,Darrin M. York
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.3c01401
摘要

We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXY发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
自信绿蝶完成签到,获得积分10
2秒前
2秒前
2秒前
烟花应助888采纳,获得10
2秒前
yunyueqixun完成签到,获得积分10
2秒前
SciGPT应助风起采纳,获得10
2秒前
3秒前
4秒前
太阳啊发布了新的文献求助10
5秒前
apple红了完成签到 ,获得积分10
5秒前
Vanessa完成签到 ,获得积分10
5秒前
铁岭砍王发布了新的文献求助10
6秒前
6秒前
Jasper应助Antares采纳,获得10
6秒前
Akim应助自然莫英采纳,获得10
7秒前
7秒前
7秒前
7秒前
yuu发布了新的文献求助10
8秒前
无极微光应助wuuw采纳,获得20
8秒前
8秒前
仲谋发布了新的文献求助10
9秒前
愉快寄真完成签到,获得积分10
9秒前
zhanglan完成签到,获得积分10
9秒前
奈思完成签到 ,获得积分10
11秒前
11秒前
11秒前
英俊的铭应助糟糕的铁锤采纳,获得10
11秒前
ssu发布了新的文献求助10
12秒前
麦克阿宇完成签到 ,获得积分10
13秒前
南海神尼发布了新的文献求助10
14秒前
坦率灵槐应助科研通管家采纳,获得10
15秒前
Booiys完成签到,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
研友_qZ6V1Z应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995