Surface-Accelerated String Method for Locating Minimum Free Energy Paths

计算机科学 弦(物理) 能量(信号处理) 曲面(拓扑) 物理 理论物理学 数学 几何学 量子力学
作者
Timothy J. Giese,Şölen Ekesan,Erika McCarthy,Yujun Tao,Darrin M. York
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.3c01401
摘要

We present a surface-accelerated string method (SASM) to efficiently optimize low-dimensional reaction pathways from the sampling performed with expensive quantum mechanical/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of the path using the aggregate sampling obtained from the current and previous string iterations, whereas approaches like the string method in collective variables (SMCV) or the modified string method in collective variables (MSMCV) update the path only from the sampling obtained from the current iteration. Furthermore, the SASM decouples the number of images used to perform sampling from the number of synthetic images used to represent the path. The path is optimized on the current best estimate of the free energy surface obtained from all available sampling, and the proposed set of new simulations is not restricted to being located along the optimized path. Instead, the umbrella potential placement is chosen to extend the range of the free energy surface and improve the quality of the free energy estimates near the path. In this manner, the SASM is shown to improve the exploration for a minimum free energy pathway in regions where the free energy surface is relatively flat. Furthermore, it improves the quality of the free energy profile when the string is discretized with too few images. We compare the SASM, SMCV, and MSMCV using 3 QM/MM applications: a ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times less sampling than the SMCV and MSMCV methods. All three algorithms have been implemented in the FE-ToolKit package made freely available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜的平文完成签到 ,获得积分10
刚刚
大树完成签到 ,获得积分10
刚刚
Aurora发布了新的文献求助10
1秒前
无极微光应助江伊采纳,获得20
1秒前
1秒前
ye发布了新的文献求助20
2秒前
ayumi完成签到,获得积分10
3秒前
完美世界应助健壮的映之采纳,获得10
3秒前
11发布了新的文献求助10
5秒前
心理可达鸭完成签到,获得积分10
5秒前
6秒前
9464完成签到 ,获得积分10
6秒前
穆子涵完成签到,获得积分10
7秒前
我是小张完成签到 ,获得积分10
7秒前
7秒前
LHP完成签到,获得积分10
10秒前
务实曼冬完成签到 ,获得积分10
10秒前
孤独的狼发布了新的文献求助10
12秒前
SONG发布了新的文献求助10
12秒前
潘果果完成签到,获得积分10
13秒前
13秒前
Ava应助优雅灵波采纳,获得10
14秒前
Aurora完成签到,获得积分10
16秒前
16秒前
咩咩完成签到,获得积分10
17秒前
称心凡发布了新的文献求助10
17秒前
英姑应助孤独的狼采纳,获得10
19秒前
刻苦大门发布了新的文献求助10
19秒前
22秒前
科研通AI6应助凯瑞采纳,获得10
22秒前
坏狗坏狗完成签到,获得积分10
26秒前
fap完成签到,获得积分10
26秒前
J.完成签到 ,获得积分10
26秒前
晴天完成签到,获得积分10
27秒前
27秒前
gy完成签到 ,获得积分10
30秒前
ZHOU发布了新的文献求助10
32秒前
33秒前
34秒前
英俊的铭应助gan采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600729
求助须知:如何正确求助?哪些是违规求助? 4686290
关于积分的说明 14842868
捐赠科研通 4677642
什么是DOI,文献DOI怎么找? 2538917
邀请新用户注册赠送积分活动 1505884
关于科研通互助平台的介绍 1471229