PCSPred: Prediction of Short Chain Antimicrobial Peptides using Machine Learning Algorithms

计算机科学 机器学习 人工智能 抗菌肽 链条(单位) 抗菌剂 算法 微生物学 生物 天文 物理
作者
Priyanshu Mondal,BhattaraVishweswar Subrahmanyam,G. K. Janani,D Kalyani
标识
DOI:10.1109/nelex59773.2023.10421222
摘要

Antimicrobial peptides (AMPs) have exhibited an effective and widespread impact in healthcare for evolving into a novel strategy against bacterial infections which have become immune to most of the conventional antibiotics. In-silico approach of evaluating antimicrobial activity for multiple combinations of peptide sequences proves to be optimizational in terms of time and effort when compared to wet lab analysis. In the current study, we have developed a predictive machine learning model which incorporates the physico-chemical and spatial properties of peptide sequences. We propose that the amino acid composition, α-helix and β-sheet propensities, charge-to-hydrophobicity ratio, isoelectric point, and their dipeptide composition are significant features that might be useful parameters for identifying novel AMPs. The PCSPred model utilizes the Random Forest algorithm of predicting, which is capable of providing the best accuracy and precision when compared to other techniques. Additionally, we have developed a means of predicting all possible peptide sequences having a maximum length of 10 amino acids with antimicrobial properties. Thus, we constructed an AMP library containing new sequences which can be implemented in-vivo to synthesize novel AMPs that are successful against resistant microbial infections and would overcome the drawbacks of conventional treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助一一采纳,获得10
刚刚
爆米花应助Bonnienuit采纳,获得30
刚刚
冷迎梦发布了新的文献求助10
刚刚
刚刚
程老板发布了新的文献求助10
1秒前
Ava应助雨碎寒江采纳,获得10
1秒前
liyun发布了新的文献求助10
1秒前
结草衔环完成签到,获得积分10
1秒前
研友_LMg3PZ完成签到,获得积分10
1秒前
Ly驳回了彭于晏应助
2秒前
2秒前
3秒前
贺江逸完成签到,获得积分20
3秒前
3秒前
迟大猫应助哈哈哈哈采纳,获得10
4秒前
风中黑猫完成签到,获得积分10
4秒前
充电宝应助称心语风采纳,获得10
4秒前
烊驼完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
英俊的铭应助李子采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
早早发布了新的文献求助10
6秒前
熬熬发布了新的文献求助10
6秒前
aaaaaa发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
一定发文章完成签到,获得积分10
9秒前
小蘑菇应助liyun采纳,获得10
9秒前
卓飞扬发布了新的文献求助20
10秒前
啦啦啦完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
有魅力荟发布了新的文献求助10
11秒前
11秒前
琦琦发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560457
求助须知:如何正确求助?哪些是违规求助? 3134520
关于积分的说明 9407839
捐赠科研通 2834665
什么是DOI,文献DOI怎么找? 1558196
邀请新用户注册赠送积分活动 727968
科研通“疑难数据库(出版商)”最低求助积分说明 716641