哈卡特
趋化因子
肿瘤坏死因子α
化学
信号转导
炎症
细胞生物学
促炎细胞因子
CCL22型
分子生物学
癌症研究
生物
免疫学
CXCL10型
生物化学
体外
作者
Wen‐Chung Huang,Chian‐Jiun Liou,Szu‐Chuan Shen,Sindy Hu,Jane C.-J. Chao,Chun‐Hsun Huang,Shu‐Ju Wu
标识
DOI:10.1016/j.intimp.2024.111665
摘要
Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 μM did not reduce HaCaT cell viability, and PUN ≥ 3 μM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 μM and ≥ 3 μM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI