Molecular simulation combined with DFT calculation guided heteroatom-doped biochar rational design for highly selective and efficient CO2 capture

杂原子 生物炭 吸附 兴奋剂 密度泛函理论 化学 烟气 化学工程 材料科学 巴(单位) 有机化学 计算化学 戒指(化学) 热解 光电子学 工程类 物理 气象学
作者
Hong Li,Minghui Tang,Ling Wang,Qi Liu,Fan Yao,Zhiyuan Gong,Yunchao Li,Shengyong Lu,Jianhua Yan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148362-148362 被引量:18
标识
DOI:10.1016/j.cej.2023.148362
摘要

Using solid sorbents for post-combustion CO2 capture from flue gas have shown many potential advantages. The heteroatom doping technique can significantly enhance the CO2 adsorption performance of biochar. However, the diverse forms of heteroatom doping make the development process complex and expensive. To address this, this work firstly used density functional theory (DFT) calculations to screen out three kinds of doping forms (BCO2, P-C, and C-S-C) on biochar, which can improve the CO2 adsorption energy and the theoretical selectivity. Subsequently, the adsorption isotherms simulated by grand canonical Monte Carlo (GCMC) showed the CO2 adsorption capacity on heteroatom-doped biochar at low pressure (≤1 bar) was higher than that of the pristine biochar, which can show excellent performance in flue gas CO2 trapping. Then, three types of heteroatom-doped biochar were synthesized based on theoretical calculations. Among them, P-doped biochar exhibited superior CO2 adsorption capacity (1.34 mmol/g) at 72 °C and 1 bar, which was 10.7 % higher than the pristine biochar. Through adsorption isotherm experiments, it was found that the performance of materials under low pressure is dominated by heteroatom doping, while under high pressure, it is dominated by pore structure, which is consistent with the conclusion obtained from GCMC simulation. And adsorption kinetics experiments revealed that the impact of heteroatom doping becomes more pronounced as the temperature increases, and heteroatom doping can optimize CO2 adsorption kinetics. Furthermore, the heteroatom-doped biochar exhibits exceptional thermal, chemical, and cyclic stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的无声完成签到 ,获得积分10
1秒前
pluto应助单于采纳,获得10
3秒前
Bethune124完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Dont_test_me完成签到 ,获得积分10
6秒前
9秒前
炸土豆完成签到 ,获得积分10
12秒前
Litoivda发布了新的文献求助10
14秒前
Gavin完成签到,获得积分10
16秒前
srz楠楠完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
一只橙子完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
lin完成签到,获得积分10
18秒前
ntrip完成签到,获得积分10
18秒前
树莓苹果完成签到,获得积分20
19秒前
吴旭东完成签到,获得积分10
20秒前
23秒前
栗子完成签到,获得积分10
24秒前
黑白发布了新的文献求助10
24秒前
24秒前
25秒前
chenjun7080完成签到,获得积分10
25秒前
深情安青应助Sunny采纳,获得10
27秒前
萝卜卷心菜完成签到 ,获得积分10
28秒前
嘎嘣脆完成签到 ,获得积分10
28秒前
sxb10101完成签到,获得积分0
28秒前
微笑枫完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
阿冲发布了新的文献求助10
29秒前
LZY完成签到,获得积分10
33秒前
TianFuAI完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
顺心的柠檬完成签到,获得积分10
35秒前
黑白完成签到,获得积分10
36秒前
安安的小板栗完成签到,获得积分10
36秒前
阿冲完成签到,获得积分10
36秒前
机智的天宇完成签到 ,获得积分10
38秒前
CLY完成签到,获得积分20
39秒前
ailemonmint完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071