Redefining landslide susceptibility under extreme rainfall events using deep learning

山崩 地质学 自然地理学 季风 滑坡分类 地理 气候学 地貌学
作者
A.L. Achu,Jobin Thomas,C. D. Aju,H. Vijith,Girish Gopinath
出处
期刊:Geomorphology [Elsevier]
卷期号:448: 109033-109033 被引量:19
标识
DOI:10.1016/j.geomorph.2023.109033
摘要

The apparent changes in the Indian summer monsoon rainfall pattern and the nature of extreme rainfall events (EREs) in the southern Western Ghats (WG) caused widespread landslides across the region. Landslide susceptibility maps generated using the past landslide inventory are one of the efficient tools that can help mitigate the deleterious effects of landslides. Landslide susceptibility maps produced using the landslide inventory of normal and extreme rainfall years by deep neural network (DNN) modelling vary in terms of their degree of susceptibility, and the differences are prominent in the moderate and high susceptibility zones. The DNN model trained by landslide inventory of normal rainfall years is capable of predicting landslides during EREs (with Area Under the Curve (AUC) value >0.90). The inclusion of the landslides that occurred during recent EREs (since 2018) into the existing landslide inventory provides a more accurate and refined prediction of landslide susceptibility, which facilitates risk-informed landscape planning and development of the region. In addition, the result reveals that 13 % of the Kerala state is extremely susceptible for landslide occurrence, among this Idukki, Palakkad, Malappuram, Pathanamthitta, and Wayanad districts are highly vulnerable to the occurrence of landslides. Besides, the study also shows an increase of 3.46 % area in extreme susceptibility zone after the 2018 ERE. The updated landslide susceptibility map of the region may be used as a vital tool for planning landslide mitigation activities in the wake of recurrent EREs and associated landslide occurrences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之恋心完成签到 ,获得积分10
4秒前
科研通AI6应助背后的雪巧采纳,获得10
8秒前
量子星尘发布了新的文献求助10
11秒前
李健的小迷弟应助thchiang采纳,获得10
12秒前
欢呼的雨琴完成签到 ,获得积分10
23秒前
SJW--666完成签到,获得积分0
23秒前
木木完成签到,获得积分10
26秒前
30秒前
thchiang发布了新的文献求助10
34秒前
迅速千愁完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
Nana完成签到 ,获得积分10
40秒前
genius完成签到 ,获得积分10
49秒前
49秒前
thchiang完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
56秒前
Aixia完成签到 ,获得积分10
57秒前
1分钟前
小叶子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
张昌炜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
背后的雪巧完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
long0809完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
luobote完成签到 ,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
Antibody完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399