Redefining landslide susceptibility under extreme rainfall events using deep learning

山崩 地质学 自然地理学 季风 滑坡分类 地理 气候学 地貌学
作者
A.L. Achu,Jobin Thomas,C. D. Aju,H. Vijith,Girish Gopinath
出处
期刊:Geomorphology [Elsevier]
卷期号:448: 109033-109033 被引量:19
标识
DOI:10.1016/j.geomorph.2023.109033
摘要

The apparent changes in the Indian summer monsoon rainfall pattern and the nature of extreme rainfall events (EREs) in the southern Western Ghats (WG) caused widespread landslides across the region. Landslide susceptibility maps generated using the past landslide inventory are one of the efficient tools that can help mitigate the deleterious effects of landslides. Landslide susceptibility maps produced using the landslide inventory of normal and extreme rainfall years by deep neural network (DNN) modelling vary in terms of their degree of susceptibility, and the differences are prominent in the moderate and high susceptibility zones. The DNN model trained by landslide inventory of normal rainfall years is capable of predicting landslides during EREs (with Area Under the Curve (AUC) value >0.90). The inclusion of the landslides that occurred during recent EREs (since 2018) into the existing landslide inventory provides a more accurate and refined prediction of landslide susceptibility, which facilitates risk-informed landscape planning and development of the region. In addition, the result reveals that 13 % of the Kerala state is extremely susceptible for landslide occurrence, among this Idukki, Palakkad, Malappuram, Pathanamthitta, and Wayanad districts are highly vulnerable to the occurrence of landslides. Besides, the study also shows an increase of 3.46 % area in extreme susceptibility zone after the 2018 ERE. The updated landslide susceptibility map of the region may be used as a vital tool for planning landslide mitigation activities in the wake of recurrent EREs and associated landslide occurrences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助xmhxpz采纳,获得10
1秒前
laaaa发布了新的文献求助10
1秒前
零知识发布了新的文献求助10
2秒前
4秒前
上官若男应助不想开学吧采纳,获得10
4秒前
科研通AI6应助黑马王子采纳,获得10
5秒前
文静的芮完成签到,获得积分10
6秒前
Owen应助lumos采纳,获得10
9秒前
10秒前
11秒前
479_完成签到,获得积分10
12秒前
13秒前
丘比特应助奋斗不斜采纳,获得10
13秒前
英俊的铭应助天海采纳,获得10
17秒前
文献求助发布了新的文献求助10
17秒前
18秒前
冷眸完成签到 ,获得积分10
19秒前
洪山老狗完成签到,获得积分10
20秒前
CodeCraft应助koi采纳,获得10
21秒前
orixero应助ZJL采纳,获得10
21秒前
22秒前
cchx发布了新的文献求助10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
陈大浩浩应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
25秒前
xixi应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
陈大浩浩应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989