Redefining landslide susceptibility under extreme rainfall events using deep learning

山崩 地质学 自然地理学 季风 滑坡分类 地理 气候学 地貌学
作者
A.L. Achu,Jobin Thomas,C.D. Aju,H. Vijith,Girish Gopinath
出处
期刊:Geomorphology [Elsevier]
卷期号:448: 109033-109033 被引量:9
标识
DOI:10.1016/j.geomorph.2023.109033
摘要

The apparent changes in the Indian summer monsoon rainfall pattern and the nature of extreme rainfall events (EREs) in the southern Western Ghats (WG) caused widespread landslides across the region. Landslide susceptibility maps generated using the past landslide inventory are one of the efficient tools that can help mitigate the deleterious effects of landslides. Landslide susceptibility maps produced using the landslide inventory of normal and extreme rainfall years by deep neural network (DNN) modelling vary in terms of their degree of susceptibility, and the differences are prominent in the moderate and high susceptibility zones. The DNN model trained by landslide inventory of normal rainfall years is capable of predicting landslides during EREs (with Area Under the Curve (AUC) value >0.90). The inclusion of the landslides that occurred during recent EREs (since 2018) into the existing landslide inventory provides a more accurate and refined prediction of landslide susceptibility, which facilitates risk-informed landscape planning and development of the region. In addition, the result reveals that 13 % of the Kerala state is extremely susceptible for landslide occurrence, among this Idukki, Palakkad, Malappuram, Pathanamthitta, and Wayanad districts are highly vulnerable to the occurrence of landslides. Besides, the study also shows an increase of 3.46 % area in extreme susceptibility zone after the 2018 ERE. The updated landslide susceptibility map of the region may be used as a vital tool for planning landslide mitigation activities in the wake of recurrent EREs and associated landslide occurrences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRRIGO发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Relax完成签到,获得积分10
2秒前
luoshi发布了新的文献求助10
2秒前
2秒前
可靠sue完成签到,获得积分10
3秒前
dzdzn3完成签到 ,获得积分20
3秒前
zjh发布了新的文献求助10
3秒前
yu_z完成签到 ,获得积分10
3秒前
上官若男应助韭菜盒子采纳,获得10
3秒前
细腻晓露完成签到,获得积分10
3秒前
大吴克发布了新的文献求助10
4秒前
饱满的煎饼完成签到,获得积分10
4秒前
dzdzn3关注了科研通微信公众号
4秒前
KING完成签到,获得积分10
5秒前
seventonight2完成签到,获得积分10
5秒前
顾矜应助xwc采纳,获得10
5秒前
Relax发布了新的文献求助10
5秒前
微笑的语梦完成签到 ,获得积分10
6秒前
落寞的紫山完成签到,获得积分10
6秒前
杨大大发布了新的文献求助10
6秒前
BOSSJING完成签到,获得积分10
6秒前
Jasper应助搞怪的人龙采纳,获得10
7秒前
7秒前
benj完成签到,获得积分10
7秒前
7秒前
zoko发布了新的文献求助10
7秒前
周老八发布了新的文献求助10
7秒前
7秒前
小杨爱吃羊完成签到 ,获得积分10
7秒前
lszhw完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
美好乌龟完成签到 ,获得积分10
8秒前
8秒前
烟雨行舟完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740