A new AI-based approach for automatic identification of tea leaf disease using deep neural network based on hybrid pooling

联营 卷积神经网络 人工智能 计算机科学 决策树 人工神经网络 模式识别(心理学) 随机森林 特征提取 鉴定(生物学) 机器学习 特征(语言学) 数据挖掘 植物 生物 语言学 哲学
作者
Qidong Heng,Sibo Yu,Yandong Zhang
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e26465-e26465 被引量:4
标识
DOI:10.1016/j.heliyon.2024.e26465
摘要

The degree of production efficiency and the quality of the commodities produced may both be directly impacted by the presence of illnesses in tea leaves. These days, this procedure may be automated with the use of artificial intelligence tools, and a number of approaches have been put out to satisfy these needs. Nonetheless, current research efforts have focused on improving diagnosis accuracy and expanding the variety of illnesses that might affect tea leaves. In this article, a new method is proposed for accurately diagnosing tea leaf diseases using artificial intelligence techniques. In the proposed method, the input images are preprocessed to remove redundant information. Then, a hybrid pooling-based Convolutional Neural Network (CNN) is employed to extract image features. In this method, the pooling layers of the CNN model are randomly adjusted based on either max pooling or average pooling functions. This strategy can enhance the efficiency of the CNN-based feature extraction model. In this method, the pooling layers of the CNN model are randomly adjusted based on either max pooling or average pooling functions. This strategy can enhance the efficiency of the CNN-based feature extraction model. After feature extraction, a weighted Random Forest (WRF) model is used for the detection of tea leaf diseases. The outputs of the decision tree models and their corresponding weights are used to identify tea leaf illnesses in this classification model, where each tree in the random forest is given a weight depending on how well it performs. The Cuckoo Search Optimization (CSO) method is used in the proposed classification model to give a weight to each tree. Tea Sickness Dataset (TSD) has been used as the basis for evaluating the suggested method's effectiveness. The findings show that the suggested approach has an average accuracy of 92.47% in identifying seven different forms of tea leaf illnesses. Additionally, the recall and accuracy metrics indicate results of 92.35 and 92.26, respectively, indicating improvements over earlier techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助腰突患者的科研采纳,获得10
刚刚
Akim应助腰突患者的科研采纳,获得10
刚刚
1秒前
谜湖发布了新的文献求助10
1秒前
1秒前
深情板凳发布了新的文献求助10
2秒前
蓉蓉完成签到,获得积分10
2秒前
爆爆完成签到,获得积分20
4秒前
伊橙发布了新的文献求助10
4秒前
CodeCraft应助呀小贝壳采纳,获得10
4秒前
Wu发布了新的文献求助10
5秒前
5秒前
6秒前
Shawn_54完成签到,获得积分0
7秒前
7秒前
健康的亦玉关注了科研通微信公众号
7秒前
silong发布了新的文献求助10
8秒前
数据分析师关注了科研通微信公众号
8秒前
9秒前
柒柒_BX发布了新的文献求助10
9秒前
要开心完成签到,获得积分10
10秒前
赘婿应助ml采纳,获得10
10秒前
pwang_ecust完成签到,获得积分10
10秒前
芝士完成签到 ,获得积分10
11秒前
FD完成签到,获得积分10
11秒前
11秒前
fazat发布了新的文献求助10
11秒前
罗lsz完成签到,获得积分10
12秒前
13秒前
GZPFJMU发布了新的文献求助10
13秒前
科研通AI5应助hyxu678采纳,获得10
14秒前
自觉寄风完成签到,获得积分10
14秒前
学术嫪毐完成签到,获得积分10
14秒前
14秒前
pwang_ecust发布了新的文献求助10
15秒前
Squirrel完成签到,获得积分10
15秒前
Q11完成签到,获得积分10
15秒前
nanfang完成签到 ,获得积分10
15秒前
闪闪雪糕完成签到,获得积分10
15秒前
酷波er应助欣欣采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961