亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oral squamous cell carcinoma detection using EfficientNet on histopathological images

深度学习 判别式 人工智能 基底细胞 计算机科学 上皮 诊断准确性 医学 病理 机器学习 放射科
作者
Eid Albalawi,Arastu Thakur,Mahesh Thyluru Ramakrishna,Surbhi Bhatia,S Sankaranarayanan,Badar Almarri,Theyazn Hassn Hadi
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:10 被引量:24
标识
DOI:10.3389/fmed.2023.1349336
摘要

Introduction Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model’s objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization. Methods The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies. Results The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model’s efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC. Discussion This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
pay发布了新的文献求助10
2秒前
3秒前
6秒前
7秒前
8秒前
星驰完成签到 ,获得积分10
8秒前
北陌完成签到 ,获得积分10
10秒前
合适的初蓝完成签到 ,获得积分10
11秒前
histamin完成签到,获得积分10
12秒前
李同学发布了新的文献求助10
12秒前
AQI发布了新的文献求助10
13秒前
ljx完成签到 ,获得积分10
14秒前
Zz完成签到 ,获得积分10
14秒前
独特的醉山关注了科研通微信公众号
19秒前
西格玛完成签到,获得积分10
23秒前
科研通AI2S应助yuyu采纳,获得30
23秒前
苏木应助yuyu采纳,获得10
23秒前
玉米完成签到,获得积分10
25秒前
娇娇完成签到 ,获得积分10
26秒前
Beginner完成签到,获得积分10
28秒前
小怪给小怪的求助进行了留言
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
31秒前
华仔应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
Aile。完成签到,获得积分10
32秒前
玉米2号完成签到,获得积分10
33秒前
33秒前
Maisie发布了新的文献求助30
35秒前
42秒前
Criminology34应助蛋仔采纳,获得10
43秒前
1111完成签到 ,获得积分10
45秒前
做科研的小施同学完成签到,获得积分10
48秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754595
求助须知:如何正确求助?哪些是违规求助? 5487917
关于积分的说明 15380281
捐赠科研通 4893160
什么是DOI,文献DOI怎么找? 2631746
邀请新用户注册赠送积分活动 1579693
关于科研通互助平台的介绍 1535417