Oral squamous cell carcinoma detection using EfficientNet on histopathological images

深度学习 判别式 人工智能 基底细胞 计算机科学 上皮 诊断准确性 医学 病理 机器学习 放射科
作者
Eid Albalawi,Arastu Thakur,Mahesh Thyluru Ramakrishna,Surbhi Bhatia,S Sankaranarayanan,Badar Almarri,Theyazn Hassn Hadi
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:10 被引量:24
标识
DOI:10.3389/fmed.2023.1349336
摘要

Introduction Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model’s objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization. Methods The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies. Results The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model’s efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC. Discussion This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干净初雪完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
sh131发布了新的文献求助10
1秒前
倪仕丽发布了新的文献求助10
1秒前
康康发布了新的文献求助10
1秒前
2秒前
邓年念完成签到,获得积分10
2秒前
momo发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
kkk发布了新的文献求助10
3秒前
4秒前
听话的遥发布了新的文献求助10
5秒前
萧萧应助Yara.H采纳,获得10
5秒前
8秒前
8秒前
1029zx发布了新的文献求助10
8秒前
9秒前
husy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
纯情的咖啡豆完成签到 ,获得积分10
11秒前
满意新梅关注了科研通微信公众号
12秒前
CipherSage应助一区种子选手采纳,获得10
12秒前
13秒前
雪媚娘发布了新的文献求助10
13秒前
Misty发布了新的文献求助10
13秒前
13秒前
Jane发布了新的文献求助10
14秒前
14秒前
16秒前
姚盈盈发布了新的文献求助10
16秒前
sy应助momo采纳,获得30
16秒前
科研通AI6应助momo采纳,获得10
16秒前
华仔应助momo采纳,获得10
16秒前
科研通AI6应助momo采纳,获得10
16秒前
16秒前
科研通AI6应助momo采纳,获得10
16秒前
科研通AI6应助momo采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718