Oral squamous cell carcinoma detection using EfficientNet on histopathological images

深度学习 判别式 人工智能 基底细胞 计算机科学 上皮 诊断准确性 医学 病理 机器学习 放射科
作者
Eid Albalawi,Arastu Thakur,Mahesh Thyluru Ramakrishna,Surbhi Bhatia,S Sankaranarayanan,Badar Almarri,Theyazn Hassn Hadi
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:10 被引量:24
标识
DOI:10.3389/fmed.2023.1349336
摘要

Introduction Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model’s objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization. Methods The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies. Results The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model’s efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC. Discussion This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
sccc发布了新的文献求助20
1秒前
3秒前
李能能发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
深情安青应助星空_采纳,获得10
7秒前
liang发布了新的文献求助10
8秒前
拼搏诗筠发布了新的文献求助10
9秒前
jiesenya完成签到,获得积分10
10秒前
tjxx完成签到,获得积分10
11秒前
呼同学发布了新的文献求助10
11秒前
孤独靖柏完成签到,获得积分20
11秒前
俞宛秋发布了新的文献求助10
11秒前
鲁西西发布了新的文献求助10
11秒前
科研通AI2S应助聪明梦容采纳,获得10
13秒前
13秒前
jacksin完成签到,获得积分10
15秒前
俞宛秋完成签到,获得积分10
17秒前
19秒前
20秒前
KIKI完成签到,获得积分0
23秒前
酷酷千愁应助噼里啪啦采纳,获得10
24秒前
24秒前
doa发布了新的文献求助10
25秒前
25秒前
呼同学关注了科研通微信公众号
30秒前
小毛发布了新的文献求助10
30秒前
31秒前
limbooo发布了新的文献求助20
32秒前
小二郎应助doa采纳,获得10
34秒前
呼啦呼啦发布了新的文献求助10
36秒前
Akim应助崔西周采纳,获得10
36秒前
hahada完成签到,获得积分10
37秒前
39秒前
39秒前
薛定谔的猫完成签到,获得积分10
39秒前
40秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830996
关于积分的说明 7982474
捐赠科研通 2492854
什么是DOI,文献DOI怎么找? 1329874
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954