Oral squamous cell carcinoma detection using EfficientNet on histopathological images

深度学习 判别式 人工智能 基底细胞 计算机科学 上皮 诊断准确性 医学 病理 机器学习 放射科
作者
Eid Albalawi,Arastu Thakur,Mahesh Thyluru Ramakrishna,Surbhi Bhatia,S Sankaranarayanan,Badar Almarri,Theyazn Hassn Hadi
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:10 被引量:24
标识
DOI:10.3389/fmed.2023.1349336
摘要

Introduction Oral Squamous Cell Carcinoma (OSCC) poses a significant challenge in oncology due to the absence of precise diagnostic tools, leading to delays in identifying the condition. Current diagnostic methods for OSCC have limitations in accuracy and efficiency, highlighting the need for more reliable approaches. This study aims to explore the discriminative potential of histopathological images of oral epithelium and OSCC. By utilizing a database containing 1224 images from 230 patients, captured at varying magnifications and publicly available, a customized deep learning model based on EfficientNetB3 was developed. The model’s objective was to differentiate between normal epithelium and OSCC tissues by employing advanced techniques such as data augmentation, regularization, and optimization. Methods The research utilized a histopathological imaging database for Oral Cancer analysis, incorporating 1224 images from 230 patients. These images, taken at various magnifications, formed the basis for training a specialized deep learning model built upon the EfficientNetB3 architecture. The model underwent training to distinguish between normal epithelium and OSCC tissues, employing sophisticated methodologies including data augmentation, regularization techniques, and optimization strategies. Results The customized deep learning model achieved significant success, showcasing a remarkable 99% accuracy when tested on the dataset. This high accuracy underscores the model’s efficacy in effectively discerning between normal epithelium and OSCC tissues. Furthermore, the model exhibited impressive precision, recall, and F1-score metrics, reinforcing its potential as a robust diagnostic tool for OSCC. Discussion This research demonstrates the promising potential of employing deep learning models to address the diagnostic challenges associated with OSCC. The model’s ability to achieve a 99% accuracy rate on the test dataset signifies a considerable leap forward in earlier and more accurate detection of OSCC. Leveraging advanced techniques in machine learning, such as data augmentation and optimization, has shown promising results in improving patient outcomes through timely and precise identification of OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
澎鱼盐发布了新的文献求助10
刚刚
1秒前
以水为师完成签到 ,获得积分10
1秒前
lyy给lyy的求助进行了留言
1秒前
我不理解完成签到,获得积分10
1秒前
FashionBoy应助帆布鞋采纳,获得10
2秒前
希望天下0贩的0应助玄音采纳,获得10
2秒前
任寒松发布了新的文献求助10
2秒前
比卜不发布了新的文献求助10
2秒前
完美完成签到,获得积分10
3秒前
机灵的夜梦完成签到 ,获得积分10
3秒前
3秒前
烟花应助橘落采纳,获得10
3秒前
3秒前
3秒前
4秒前
WoeL.Aug.11发布了新的文献求助10
4秒前
纷雪发布了新的文献求助10
4秒前
4秒前
受伤芝麻完成签到,获得积分10
4秒前
FN关注了科研通微信公众号
5秒前
ygm发布了新的文献求助20
5秒前
大个应助一水独流采纳,获得10
5秒前
derek10086完成签到,获得积分10
5秒前
133发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
i的问题发布了新的文献求助10
7秒前
再沉默完成签到,获得积分10
7秒前
祺君发布了新的文献求助10
8秒前
8秒前
Pzuzu完成签到,获得积分10
9秒前
结实白柏完成签到,获得积分10
10秒前
Owen应助zss采纳,获得10
10秒前
10秒前
英姑应助清欢采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369