亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unified and Tensorized Incomplete Multi-View Kernel Subspace Clustering

聚类分析 核(代数) 计算机科学 子空间拓扑 人工智能 数学 模式识别(心理学) 组合数学
作者
Guangyu Zhang,Dong Huang,Chang‐Dong Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1550-1566 被引量:3
标识
DOI:10.1109/tetci.2024.3353576
摘要

Incomplete multi-view clustering (IMC) has recently received widespread attention in the field of clustering analysis. In spite of the great success, we observe that the current IMC approaches are still faced with three common demerits. First, they mostly fail to recover the inherent (especially nonlinear) subspace structure during incomplete clustering procedure. Second, these approaches tend to design the objective function by some specific matrix norms, yet often overlook the high-level correlation embedded in heterogeneous views. Third, many of them follow a two-stage framework, which inevitably leads to the sub-optimal clustering result due to the lack of the ability of joint optimization. To overcome these demerits, we develop a novel approach termed Unified and Tensorized Incomplete Multi-view Kernel Subspace Clustering (UT-IMKSC) in this paper. Specifically, a kernelized incomplete subspace clustering framework is formulated to exploit the inherent subspace structure from multiple views. In this framework, we aim to impute the incomplete kernels and perform incomplete subspace clustering simultaneously, upon which the low-rank tensor representations as well as their affinity matrix can be seamlessly achieved in a one-step manner. This unified formulation enables our approach to recover the latent relationship among observed and unobserved samples, while capturing the high-level correlation for strengthened subspace clustering. To the best of our knowledge, our approach is the first attempt to formulate incomplete multi-view kernel subspace clustering from unified and tensorized perspectives. Extensive experiments are conducted on various incomplete multi-view datasets, which have demonstrated the superiority of our approach over the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
1秒前
1秒前
Bizibili完成签到,获得积分10
5秒前
Maximoff发布了新的文献求助10
6秒前
彭于晏应助Schroenius采纳,获得10
6秒前
25秒前
31秒前
32秒前
annice发布了新的文献求助10
34秒前
Schroenius发布了新的文献求助10
35秒前
思源应助Wri采纳,获得10
37秒前
annice完成签到,获得积分10
41秒前
46秒前
49秒前
caca完成签到,获得积分10
50秒前
pan发布了新的文献求助10
50秒前
鳗鱼厉发布了新的文献求助10
56秒前
善学以致用应助allenpp采纳,获得50
57秒前
1分钟前
小蘑菇应助pan采纳,获得10
1分钟前
李昊搏完成签到,获得积分20
1分钟前
简单的尔风完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
LANER完成签到 ,获得积分10
2分钟前
骆凤灵完成签到 ,获得积分10
2分钟前
2分钟前
鳗鱼厉发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Sailzyf完成签到,获得积分10
2分钟前
Schroenius完成签到,获得积分10
3分钟前
joanna完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Wri完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054368
关于积分的说明 9041835
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505166
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864