Unified and Tensorized Incomplete Multi-View Kernel Subspace Clustering

聚类分析 核(代数) 计算机科学 子空间拓扑 人工智能 数学 模式识别(心理学) 组合数学
作者
Guangyu Zhang,Dong Huang,Chang‐Dong Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1550-1566 被引量:5
标识
DOI:10.1109/tetci.2024.3353576
摘要

Incomplete multi-view clustering (IMC) has recently received widespread attention in the field of clustering analysis. In spite of the great success, we observe that the current IMC approaches are still faced with three common demerits. First, they mostly fail to recover the inherent (especially nonlinear) subspace structure during incomplete clustering procedure. Second, these approaches tend to design the objective function by some specific matrix norms, yet often overlook the high-level correlation embedded in heterogeneous views. Third, many of them follow a two-stage framework, which inevitably leads to the sub-optimal clustering result due to the lack of the ability of joint optimization. To overcome these demerits, we develop a novel approach termed Unified and Tensorized Incomplete Multi-view Kernel Subspace Clustering (UT-IMKSC) in this paper. Specifically, a kernelized incomplete subspace clustering framework is formulated to exploit the inherent subspace structure from multiple views. In this framework, we aim to impute the incomplete kernels and perform incomplete subspace clustering simultaneously, upon which the low-rank tensor representations as well as their affinity matrix can be seamlessly achieved in a one-step manner. This unified formulation enables our approach to recover the latent relationship among observed and unobserved samples, while capturing the high-level correlation for strengthened subspace clustering. To the best of our knowledge, our approach is the first attempt to formulate incomplete multi-view kernel subspace clustering from unified and tensorized perspectives. Extensive experiments are conducted on various incomplete multi-view datasets, which have demonstrated the superiority of our approach over the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助内向的昊焱采纳,获得10
刚刚
科研通AI6应助内向的昊焱采纳,获得10
刚刚
无花果应助文艺的草莓采纳,获得10
刚刚
ycy发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
Ava应助ddizi采纳,获得30
4秒前
4秒前
小池同学完成签到,获得积分10
5秒前
科研通AI6应助121311采纳,获得10
6秒前
Carolin发布了新的文献求助10
6秒前
谦让涵菡完成签到 ,获得积分10
7秒前
王耀武完成签到,获得积分10
7秒前
朴素念之完成签到,获得积分20
8秒前
8秒前
学术裁缝发布了新的文献求助10
8秒前
连冬萱发布了新的文献求助10
8秒前
ruby完成签到,获得积分10
8秒前
大魔王完成签到 ,获得积分10
9秒前
zhang完成签到,获得积分10
9秒前
YW发布了新的文献求助30
9秒前
xg发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
踏实绮露完成签到 ,获得积分10
13秒前
13秒前
iam小羊人完成签到,获得积分20
14秒前
14秒前
15秒前
失眠无声完成签到,获得积分10
15秒前
Jiang完成签到,获得积分10
16秒前
大模型应助称心的乘云采纳,获得10
16秒前
桐桐应助lw采纳,获得10
17秒前
17秒前
Hello应助连冬萱采纳,获得30
18秒前
18秒前
19秒前
Rain_BJ发布了新的文献求助10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702