Unified and Tensorized Incomplete Multi-View Kernel Subspace Clustering

聚类分析 核(代数) 计算机科学 子空间拓扑 人工智能 数学 模式识别(心理学) 组合数学
作者
Guangyu Zhang,Dong Huang,Chang‐Dong Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1550-1566 被引量:5
标识
DOI:10.1109/tetci.2024.3353576
摘要

Incomplete multi-view clustering (IMC) has recently received widespread attention in the field of clustering analysis. In spite of the great success, we observe that the current IMC approaches are still faced with three common demerits. First, they mostly fail to recover the inherent (especially nonlinear) subspace structure during incomplete clustering procedure. Second, these approaches tend to design the objective function by some specific matrix norms, yet often overlook the high-level correlation embedded in heterogeneous views. Third, many of them follow a two-stage framework, which inevitably leads to the sub-optimal clustering result due to the lack of the ability of joint optimization. To overcome these demerits, we develop a novel approach termed Unified and Tensorized Incomplete Multi-view Kernel Subspace Clustering (UT-IMKSC) in this paper. Specifically, a kernelized incomplete subspace clustering framework is formulated to exploit the inherent subspace structure from multiple views. In this framework, we aim to impute the incomplete kernels and perform incomplete subspace clustering simultaneously, upon which the low-rank tensor representations as well as their affinity matrix can be seamlessly achieved in a one-step manner. This unified formulation enables our approach to recover the latent relationship among observed and unobserved samples, while capturing the high-level correlation for strengthened subspace clustering. To the best of our knowledge, our approach is the first attempt to formulate incomplete multi-view kernel subspace clustering from unified and tensorized perspectives. Extensive experiments are conducted on various incomplete multi-view datasets, which have demonstrated the superiority of our approach over the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助博修采纳,获得10
1秒前
牛牛牛发布了新的文献求助10
1秒前
1秒前
Teresa发布了新的文献求助10
2秒前
PaoPao发布了新的文献求助10
3秒前
斯文败类应助沉静从蓉采纳,获得10
3秒前
luw2018发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
midokaori发布了新的文献求助10
5秒前
5秒前
小田心发布了新的文献求助10
6秒前
6秒前
苏安莲完成签到,获得积分10
6秒前
开始完成签到,获得积分10
6秒前
6秒前
7秒前
一事无成的研一完成签到 ,获得积分10
7秒前
充电宝应助个性的汲采纳,获得10
8秒前
一心难求发布了新的文献求助10
9秒前
9秒前
9秒前
月yue发布了新的文献求助10
10秒前
Hello应助冰糖采纳,获得10
10秒前
老实的小笼包完成签到,获得积分10
10秒前
风筝鱼完成签到 ,获得积分10
11秒前
11秒前
独立江湖女完成签到 ,获得积分10
11秒前
11秒前
sworde完成签到,获得积分10
11秒前
11秒前
coffee333发布了新的文献求助10
11秒前
13秒前
echo完成签到 ,获得积分10
14秒前
pxy完成签到,获得积分10
14秒前
晚心发布了新的文献求助10
14秒前
123完成签到,获得积分10
14秒前
王嘟嘟完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149