Comparison of CNN-based and Transformer-based Approaches for Sparse-view CT Reconstruction

计算机科学 人工智能 变压器 迭代重建 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Changrong Shi,Yongshun Xiao
标识
DOI:10.1109/nss/mic44845.2022.10399215
摘要

Sparse-view Computed Tomography (CT) is an effective method to decrease X-ray ionizing radiation dose by reducing the scanning time. However, sparse-view CT leads to severe artifacts in reconstructed images due to insufficient projection data. In order to improve the quality of sparse-view CT images, a wide variety of approaches based on deep learning have been proposed, including using convolutional neural networks (CNN) as pre-processing or post-processing steps. However, it is of difficulty for convolution to deal with long-range dependent information. Recently, Transformer, which is designed to capture global information, has shown promising performance in computer vision. In this study, we compared CNN-based methods including a pre-processing method SIUNet and a post-processing method FBPConvNet, with SwinIR which is based on Transformer for sparse-view CT. To further prove the effectiveness of SwinIR, we also proposed a dual-domain method which combined SIUNet with FBPConvNet for comparison. These approaches were trained and tested on simulated sparse-view data generated from "2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge" datasets with different numbers of projection views and noise levels. Experiment results showed that, compared with three CNN-based methods, SwinIR could reduce more noise artifacts and showed better detail recovery on various scenarios. Further, SwinIR improved average PSNR on testing datasets by 1∼2dB compared with FBPConvNet with only about one-third of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力向上的小刘完成签到,获得积分10
刚刚
鸟鸟鸟完成签到 ,获得积分10
刚刚
刚刚
阿拉哈哈笑完成签到,获得积分10
刚刚
周易完成签到,获得积分10
刚刚
wang发布了新的文献求助10
刚刚
参宿三完成签到 ,获得积分10
1秒前
lhy完成签到,获得积分10
1秒前
哒哒哒完成签到,获得积分10
1秒前
Lucas应助TangSEU采纳,获得10
1秒前
feijelly完成签到,获得积分10
1秒前
Lanmeiwei完成签到,获得积分10
2秒前
wtp关注了科研通微信公众号
2秒前
冷傲的如凡完成签到 ,获得积分10
2秒前
凤凰院凶真完成签到,获得积分10
2秒前
3秒前
3秒前
yuhui完成签到,获得积分10
3秒前
Isabel完成签到 ,获得积分10
4秒前
4秒前
ly666发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
爆米花完成签到,获得积分10
5秒前
5秒前
zzzxhhr完成签到,获得积分10
6秒前
CipherSage应助慈祥的丹寒采纳,获得10
6秒前
ask基本上完成签到 ,获得积分10
6秒前
Owen应助丢丢在吗采纳,获得10
6秒前
aben050361完成签到,获得积分10
6秒前
司空发布了新的文献求助10
7秒前
7秒前
小晚风完成签到,获得积分10
7秒前
7890733发布了新的文献求助10
7秒前
不安的从霜完成签到,获得积分10
8秒前
海盗船长完成签到,获得积分10
8秒前
8秒前
yang完成签到,获得积分10
8秒前
KYT曾Zeng完成签到,获得积分10
8秒前
8秒前
coesite完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415