Comparison of CNN-based and Transformer-based Approaches for Sparse-view CT Reconstruction

计算机科学 人工智能 变压器 迭代重建 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Changrong Shi,Yongshun Xiao
标识
DOI:10.1109/nss/mic44845.2022.10399215
摘要

Sparse-view Computed Tomography (CT) is an effective method to decrease X-ray ionizing radiation dose by reducing the scanning time. However, sparse-view CT leads to severe artifacts in reconstructed images due to insufficient projection data. In order to improve the quality of sparse-view CT images, a wide variety of approaches based on deep learning have been proposed, including using convolutional neural networks (CNN) as pre-processing or post-processing steps. However, it is of difficulty for convolution to deal with long-range dependent information. Recently, Transformer, which is designed to capture global information, has shown promising performance in computer vision. In this study, we compared CNN-based methods including a pre-processing method SIUNet and a post-processing method FBPConvNet, with SwinIR which is based on Transformer for sparse-view CT. To further prove the effectiveness of SwinIR, we also proposed a dual-domain method which combined SIUNet with FBPConvNet for comparison. These approaches were trained and tested on simulated sparse-view data generated from "2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge" datasets with different numbers of projection views and noise levels. Experiment results showed that, compared with three CNN-based methods, SwinIR could reduce more noise artifacts and showed better detail recovery on various scenarios. Further, SwinIR improved average PSNR on testing datasets by 1∼2dB compared with FBPConvNet with only about one-third of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
haaaz发布了新的文献求助10
1秒前
laber应助科研通管家采纳,获得30
1秒前
所所应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得50
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助LaTeXer采纳,获得10
3秒前
一二发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
李海艳发布了新的文献求助10
3秒前
坚忍完成签到,获得积分20
4秒前
4秒前
我是老大应助hhhh采纳,获得10
4秒前
4秒前
5秒前
樱桃小丸子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
慕青应助白秋秋采纳,获得10
5秒前
5秒前
华仔应助玺白白采纳,获得10
6秒前
6秒前
Philippe发布了新的文献求助10
6秒前
斯文败类应助bamboo采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437