Comparison of CNN-based and Transformer-based Approaches for Sparse-view CT Reconstruction

计算机科学 人工智能 变压器 迭代重建 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Changrong Shi,Yongshun Xiao
标识
DOI:10.1109/nss/mic44845.2022.10399215
摘要

Sparse-view Computed Tomography (CT) is an effective method to decrease X-ray ionizing radiation dose by reducing the scanning time. However, sparse-view CT leads to severe artifacts in reconstructed images due to insufficient projection data. In order to improve the quality of sparse-view CT images, a wide variety of approaches based on deep learning have been proposed, including using convolutional neural networks (CNN) as pre-processing or post-processing steps. However, it is of difficulty for convolution to deal with long-range dependent information. Recently, Transformer, which is designed to capture global information, has shown promising performance in computer vision. In this study, we compared CNN-based methods including a pre-processing method SIUNet and a post-processing method FBPConvNet, with SwinIR which is based on Transformer for sparse-view CT. To further prove the effectiveness of SwinIR, we also proposed a dual-domain method which combined SIUNet with FBPConvNet for comparison. These approaches were trained and tested on simulated sparse-view data generated from "2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge" datasets with different numbers of projection views and noise levels. Experiment results showed that, compared with three CNN-based methods, SwinIR could reduce more noise artifacts and showed better detail recovery on various scenarios. Further, SwinIR improved average PSNR on testing datasets by 1∼2dB compared with FBPConvNet with only about one-third of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PEI完成签到,获得积分10
刚刚
无花果应助weerfi采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
宁夕发布了新的文献求助10
1秒前
1秒前
求是发布了新的文献求助10
2秒前
3秒前
3秒前
qing完成签到 ,获得积分20
3秒前
Swagger完成签到,获得积分10
3秒前
汉堡包应助jdz采纳,获得10
4秒前
4秒前
上官若男应助江天暮雪采纳,获得10
4秒前
4秒前
ding应助水刃木采纳,获得10
5秒前
定西完成签到,获得积分10
5秒前
一一完成签到,获得积分10
5秒前
冷艳迎蕾应助舒心新儿采纳,获得100
6秒前
6秒前
6秒前
精明玲发布了新的文献求助10
6秒前
我是老大应助glacial采纳,获得10
6秒前
6秒前
积极寻梅发布了新的文献求助10
6秒前
天天快乐应助顺利甜瓜采纳,获得10
8秒前
pw完成签到,获得积分10
8秒前
Amelia完成签到,获得积分10
9秒前
mouxq发布了新的文献求助10
10秒前
10秒前
skyscraper完成签到,获得积分10
10秒前
赘婿应助稳重大象采纳,获得10
10秒前
张会完成签到,获得积分10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
柏林寒冬应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
北地风情应助科研通管家采纳,获得20
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434221
求助须知:如何正确求助?哪些是违规求助? 4546510
关于积分的说明 14202869
捐赠科研通 4466425
什么是DOI,文献DOI怎么找? 2448134
邀请新用户注册赠送积分活动 1439030
关于科研通互助平台的介绍 1415929