Comparison of CNN-based and Transformer-based Approaches for Sparse-view CT Reconstruction

计算机科学 人工智能 变压器 迭代重建 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Changrong Shi,Yongshun Xiao
标识
DOI:10.1109/nss/mic44845.2022.10399215
摘要

Sparse-view Computed Tomography (CT) is an effective method to decrease X-ray ionizing radiation dose by reducing the scanning time. However, sparse-view CT leads to severe artifacts in reconstructed images due to insufficient projection data. In order to improve the quality of sparse-view CT images, a wide variety of approaches based on deep learning have been proposed, including using convolutional neural networks (CNN) as pre-processing or post-processing steps. However, it is of difficulty for convolution to deal with long-range dependent information. Recently, Transformer, which is designed to capture global information, has shown promising performance in computer vision. In this study, we compared CNN-based methods including a pre-processing method SIUNet and a post-processing method FBPConvNet, with SwinIR which is based on Transformer for sparse-view CT. To further prove the effectiveness of SwinIR, we also proposed a dual-domain method which combined SIUNet with FBPConvNet for comparison. These approaches were trained and tested on simulated sparse-view data generated from "2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge" datasets with different numbers of projection views and noise levels. Experiment results showed that, compared with three CNN-based methods, SwinIR could reduce more noise artifacts and showed better detail recovery on various scenarios. Further, SwinIR improved average PSNR on testing datasets by 1∼2dB compared with FBPConvNet with only about one-third of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谓风完成签到,获得积分10
刚刚
1秒前
拉长的秋白完成签到 ,获得积分10
2秒前
laity完成签到,获得积分10
2秒前
2秒前
Momomo完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
嗷呜小老虎WHY完成签到 ,获得积分10
5秒前
7秒前
9秒前
佳妹儿发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
Aggie发布了新的文献求助10
12秒前
licc发布了新的文献求助10
12秒前
FxF完成签到,获得积分10
13秒前
Dun发布了新的文献求助10
14秒前
14秒前
15秒前
深情安青应助佳妹儿采纳,获得10
16秒前
泡泡关注了科研通微信公众号
17秒前
17秒前
思静静发布了新的文献求助10
17秒前
19秒前
星辰大海应助于夜柳采纳,获得10
19秒前
lynn221204发布了新的文献求助10
19秒前
20秒前
HongMou完成签到,获得积分10
21秒前
Aggie完成签到,获得积分10
21秒前
王sir完成签到,获得积分10
22秒前
风中的善愁完成签到,获得积分10
25秒前
liu完成签到 ,获得积分10
25秒前
Garnieta完成签到,获得积分10
25秒前
深情安青应助无私翎采纳,获得10
26秒前
lk发布了新的文献求助10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142263
求助须知:如何正确求助?哪些是违规求助? 4340519
关于积分的说明 13517711
捐赠科研通 4180433
什么是DOI,文献DOI怎么找? 2292461
邀请新用户注册赠送积分活动 1293045
关于科研通互助平台的介绍 1235591