Comparison of CNN-based and Transformer-based Approaches for Sparse-view CT Reconstruction

计算机科学 人工智能 变压器 迭代重建 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Changrong Shi,Yongshun Xiao
标识
DOI:10.1109/nss/mic44845.2022.10399215
摘要

Sparse-view Computed Tomography (CT) is an effective method to decrease X-ray ionizing radiation dose by reducing the scanning time. However, sparse-view CT leads to severe artifacts in reconstructed images due to insufficient projection data. In order to improve the quality of sparse-view CT images, a wide variety of approaches based on deep learning have been proposed, including using convolutional neural networks (CNN) as pre-processing or post-processing steps. However, it is of difficulty for convolution to deal with long-range dependent information. Recently, Transformer, which is designed to capture global information, has shown promising performance in computer vision. In this study, we compared CNN-based methods including a pre-processing method SIUNet and a post-processing method FBPConvNet, with SwinIR which is based on Transformer for sparse-view CT. To further prove the effectiveness of SwinIR, we also proposed a dual-domain method which combined SIUNet with FBPConvNet for comparison. These approaches were trained and tested on simulated sparse-view data generated from "2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge" datasets with different numbers of projection views and noise levels. Experiment results showed that, compared with three CNN-based methods, SwinIR could reduce more noise artifacts and showed better detail recovery on various scenarios. Further, SwinIR improved average PSNR on testing datasets by 1∼2dB compared with FBPConvNet with only about one-third of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luanzhaohui发布了新的文献求助10
刚刚
插画想起完成签到,获得积分20
2秒前
萄哥布鸽完成签到,获得积分10
3秒前
4秒前
充电宝应助Ammon采纳,获得10
4秒前
zozo发布了新的文献求助10
5秒前
沉默傲芙发布了新的文献求助10
6秒前
Jasper应助少吃一口采纳,获得10
6秒前
小静静发布了新的文献求助50
6秒前
hao253完成签到,获得积分10
6秒前
Catherine完成签到,获得积分10
6秒前
柳娅茹完成签到,获得积分20
7秒前
zlovej完成签到 ,获得积分10
8秒前
z7完成签到,获得积分10
8秒前
迦佭完成签到,获得积分10
8秒前
小新同学完成签到,获得积分10
9秒前
10秒前
哭泣的海豚完成签到,获得积分10
11秒前
林好事完成签到,获得积分10
11秒前
11秒前
慕青应助llin采纳,获得10
13秒前
AVsecurity应助舒适嘉熙采纳,获得50
15秒前
15秒前
zozo完成签到,获得积分10
15秒前
15秒前
as完成签到,获得积分10
15秒前
赵赵发布了新的文献求助10
15秒前
典雅山槐发布了新的文献求助10
15秒前
lelouch完成签到,获得积分10
17秒前
17秒前
zyn完成签到 ,获得积分10
18秒前
Owen应助怕孤独的唇彩采纳,获得10
19秒前
轻风完成签到,获得积分10
21秒前
23秒前
24秒前
MMMar完成签到 ,获得积分10
24秒前
淡然依凝发布了新的文献求助10
24秒前
24秒前
我是老大应助麦子采纳,获得10
24秒前
九九完成签到 ,获得积分10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070