Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression

签名(拓扑) 鉴定(生物学) 计算生物学 疾病 脂肪肝 医学 基因 基因签名 生物 遗传学 生物信息学 内科学 数学 基因表达 植物 几何学
作者
Seungmin Oh,Yang-Hyun Baek,Sung‐Ju Jung,Sumin Yoon,Byeonggeun Kang,Si-Nae Han,Gaeul Park,Je Yeong Ko,Songhee Han,Jin–Sook Jeong,Jin-Han Cho,Young-Hoon Roh,Sungwook Lee,Gi-Bok Choi,Yong Sun Lee,Won Kim,Rho Hyun Seong,Jong Hoon Park,Yeon-Su Lee,Kyung Hyun Yoo
出处
期刊:Clinical and molecular hepatology [The Korean Association for the Study of the Liver]
卷期号:30 (2): 247-262 被引量:3
标识
DOI:10.3350/cmh.2023.0449
摘要

Background/Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.Methods: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.Results: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.Conclusions: We identified a signature gene set (i.e., <i>CAPG, HYAL3, WIPI1, TREM2, SPP1</i>, and <i>RNASE6</i>) with strong potential as a panel of diagnostic genes of MASLD-associated disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助TS采纳,获得10
刚刚
2秒前
领导范儿应助全球采纳,获得30
2秒前
淡淡宛完成签到 ,获得积分10
2秒前
Denmark完成签到 ,获得积分10
3秒前
ne发布了新的文献求助10
3秒前
恋恋青葡萄完成签到,获得积分10
3秒前
邢哥哥完成签到,获得积分10
4秒前
hml123完成签到,获得积分10
5秒前
Steven完成签到,获得积分10
6秒前
zhao完成签到,获得积分10
6秒前
kaiqiang发布了新的文献求助10
7秒前
7秒前
我爱Chem完成签到 ,获得积分10
8秒前
8秒前
wanci应助企鹅公路采纳,获得10
9秒前
11秒前
gloval完成签到,获得积分10
13秒前
hyw发布了新的文献求助10
13秒前
简单的白云完成签到,获得积分10
13秒前
Anquan完成签到,获得积分10
15秒前
摘星012完成签到 ,获得积分10
16秒前
田様应助LX采纳,获得10
17秒前
小土豆完成签到 ,获得积分10
17秒前
研研研完成签到,获得积分10
17秒前
00完成签到,获得积分10
18秒前
NexusExplorer应助西湖渔夫采纳,获得10
18秒前
不是一个名字完成签到,获得积分10
19秒前
QWE发布了新的文献求助10
19秒前
joyliu完成签到,获得积分10
20秒前
daliu完成签到,获得积分10
21秒前
22秒前
Bryan_Wang关注了科研通微信公众号
23秒前
Lucas应助知秋不知秋采纳,获得10
24秒前
24秒前
24秒前
25秒前
MayorWang完成签到,获得积分10
25秒前
26秒前
hbpu230701完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175