Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression

签名(拓扑) 鉴定(生物学) 计算生物学 疾病 脂肪肝 医学 基因 基因签名 生物 遗传学 生物信息学 内科学 数学 基因表达 植物 几何学
作者
Seungmin Oh,Yang-Hyun Baek,Sung‐Ju Jung,Sumin Yoon,Byeonggeun Kang,Si-Nae Han,Gaeul Park,Je Yeong Ko,Songhee Han,Jin–Sook Jeong,Jin-Han Cho,Young-Hoon Roh,Sungwook Lee,Gi-Bok Choi,Yong Sun Lee,Won Kim,Rho Hyun Seong,Jong Hoon Park,Yeon-Su Lee,Kyung Hyun Yoo
出处
期刊:Clinical and molecular hepatology [The Korean Association for the Study of the Liver]
卷期号:30 (2): 247-262 被引量:3
标识
DOI:10.3350/cmh.2023.0449
摘要

Background/Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.Methods: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.Results: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.Conclusions: We identified a signature gene set (i.e., <i>CAPG, HYAL3, WIPI1, TREM2, SPP1</i>, and <i>RNASE6</i>) with strong potential as a panel of diagnostic genes of MASLD-associated disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Will发布了新的文献求助10
1秒前
Rjy发布了新的文献求助10
1秒前
123456发布了新的文献求助10
1秒前
1秒前
AIO发布了新的文献求助10
1秒前
欢呼的念瑶完成签到,获得积分10
2秒前
2秒前
徐木木发布了新的文献求助10
3秒前
Lee发布了新的文献求助30
3秒前
min完成签到,获得积分10
3秒前
3秒前
HX发布了新的文献求助10
3秒前
3秒前
斯文败类应助默默的橘子采纳,获得10
3秒前
万能图书馆应助Rngf_eeei采纳,获得10
4秒前
Tera完成签到,获得积分10
4秒前
meo应助PMME采纳,获得10
4秒前
最最完成签到,获得积分10
5秒前
zhangyapeng完成签到,获得积分10
5秒前
陈末应助雪山飞龙采纳,获得10
5秒前
halabouqii发布了新的文献求助10
6秒前
6秒前
7秒前
浅念关注了科研通微信公众号
7秒前
咖褐发布了新的文献求助10
7秒前
祖诗云完成签到,获得积分10
7秒前
小蘑菇应助璟晔采纳,获得10
8秒前
zybbb发布了新的文献求助10
8秒前
魏京京完成签到,获得积分10
8秒前
8秒前
小蘑菇应助Sylvia采纳,获得10
8秒前
yaya完成签到,获得积分10
8秒前
哇奥发布了新的文献求助10
9秒前
阿莫西西林完成签到,获得积分10
9秒前
潘多拉完成签到,获得积分10
9秒前
赘婿应助认真的TOTORO采纳,获得10
9秒前
dxannie完成签到,获得积分10
9秒前
我是老大应助熊熊熊采纳,获得10
10秒前
10秒前
唠叨的秋蝶完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572