Energy Efficient Path Planning Scheme for Unmanned Aerial Vehicle Using Hybrid Generic Algorithm-Based Q-Learning Optimization

运动规划 计算机科学 障碍物 遗传算法 路径(计算) 强化学习 能源消耗 能量(信号处理) 避障 路径长度 方案(数学) 避碰 算法 数学优化 实时计算 碰撞 人工智能 机器学习 移动机器人 工程类 机器人 数学 计算机网络 数学分析 统计 电气工程 计算机安全 政治学 法学 程序设计语言
作者
Rashid A. Saeed,Elmustafa Sayed Ali,Maha Abdelhaq,Raed Alsaqour,Fatima Rayan Awad Ahmed,Asma Mohammed Elbashir Saad
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 13400-13417 被引量:1
标识
DOI:10.1109/access.2023.3344455
摘要

Efficient path planning optimization strategies are required to maximize flying time while consuming the least energy. This research offers a novel approach for energy-efficient path planning for Unmanned Aerial Vehicles (UAVs) that combines a hybrid evolutionary algorithm and Q-learning while accounting for the UAV's velocity and distance from obstacles. To overcome the constraints of traditional optimization approaches, the hybrid methodology combines genetic algorithms and Q-learning. The suggested approach optimizes path-planning decisions based on real-time information by considering the UAV's velocity and distance from obstacles. Genetic Algorithm (GA) creates a wide collection of candidate pathways. In contrast, Q-learning uses reinforcement learning to make educated selections based on the UAV's present velocity and proximity to static obstacles. This integration allows the UAV to modify its path dynamically based on its energy requirements and environmental constraints. The main goal is to develop a UAV path planning scheme capable of dealing with obstacle-filled environments to improve energy efficiency and collision avoidance during flight missions. Our experimental results show that the hybrid technique outperforms the classical GA method in terms of energy efficiency by significantly reducing energy consumption while maintaining a suitable collision rate and the best path cost to the desired locations. The analysis results improve the performance of the hybrid GA/QL algorithm by more than 57.14% compared to classical GA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
森花发布了新的文献求助10
2秒前
上官若男应助鳗鱼厉采纳,获得10
3秒前
3秒前
5秒前
找寻四氢叶酸完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
8秒前
9秒前
慕青应助今时今日采纳,获得30
10秒前
10秒前
地尔硫卓发布了新的文献求助10
11秒前
12秒前
12秒前
doudou应助鳗鱼厉采纳,获得10
13秒前
郑菲菲发布了新的文献求助10
13秒前
13秒前
13秒前
111发布了新的文献求助10
13秒前
ocean发布了新的文献求助30
14秒前
大个应助月亮是甜的采纳,获得10
15秒前
17秒前
yitonghan发布了新的文献求助10
17秒前
优秀发带完成签到,获得积分10
17秒前
Janisa发布了新的文献求助10
18秒前
lokia发布了新的文献求助10
18秒前
18秒前
JamesPei应助杨怂怂采纳,获得10
19秒前
慕青应助地尔硫卓采纳,获得10
19秒前
20秒前
芳hanbing20129_完成签到 ,获得积分10
21秒前
111完成签到,获得积分10
21秒前
一二完成签到 ,获得积分10
22秒前
sugar完成签到,获得积分10
22秒前
等等完成签到,获得积分10
23秒前
24秒前
ZJ发布了新的文献求助10
25秒前
等等发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663