A socio-inspired hybrid election algorithm for random k satisfiability in discrete Hopfield neural network

可满足性 计算机科学 人工神经网络 Hopfield网络 算法 人工智能
作者
Syed Anayet Karim,Mohd Shareduwan Mohd Kasihmuddin,Mohd. Asyraf Mansor,Siti Zulaikha Mohd Jamaludin,Nur Ezlin Zamri,Md Rabiol Amin
出处
期刊:Nucleation and Atmospheric Aerosols
标识
DOI:10.1063/5.0194531
摘要

Metaheuristics and Hopfield neural networks (HNN) are frequently employed to address complex optimization problems. In particular, the iterative and robust metaheuristics technique such as the Election algorithm (EA) is frequently used to dynamically enhance the training phase and converging of the neural network. In this research, we suggest using a recently developed Hybrid Election Algorithm (HEA) in conjunction with Discrete Hopfield Neural Network (DHNN) to solve problems of varying degrees of complexity in Boolean satisfiability programming. Because of its robust operator set, the HEA can be utilised to ease the computational load of DHNN. The primary objective is to enhance the training phase of DHNN such that it optimally represents higher-order logic in terms of Random k Satisfiability. To win over voters, political parties have advocated for a HEA that would allow them to have greater control over areas outside their borders. This strategy is crucial for accelerating the learning of DHNN. Different numbers of neurons (NN) invalidated the robustness and efficiency of HEA in DHNN for RANkSAT logical expressions. Different statistical error accumulations, global minimum solutions, and similarity analysis were used to compare the proposed model against a preexisting EA model during the training phase. The results indicated that the proposed DHNNRANkSAT-HEA model was superior to the previously used DHNNRANkSAT-EA model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
侯泽宇完成签到,获得积分10
1秒前
min发布了新的文献求助10
2秒前
清光完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
Pt完成签到,获得积分10
4秒前
优秀含羞草完成签到,获得积分10
5秒前
微笑枫完成签到,获得积分10
5秒前
奥美拉完成签到,获得积分20
5秒前
bailing128完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
是的哇完成签到,获得积分10
6秒前
天真的幻露完成签到,获得积分10
7秒前
小王完成签到,获得积分10
8秒前
虚幻的香彤完成签到,获得积分10
8秒前
柔弱云朵完成签到,获得积分10
8秒前
8秒前
康康星完成签到,获得积分10
9秒前
LALALADDDD完成签到,获得积分10
9秒前
9秒前
10秒前
Yxian完成签到,获得积分10
10秒前
ZY完成签到 ,获得积分10
10秒前
时光完成签到,获得积分10
11秒前
11秒前
尊敬惜雪完成签到,获得积分10
11秒前
云中完成签到,获得积分10
13秒前
晨光中完成签到,获得积分10
13秒前
kxdxng完成签到 ,获得积分10
14秒前
苗苗043完成签到,获得积分10
14秒前
活力的听露完成签到 ,获得积分10
14秒前
娇气的天亦完成签到,获得积分10
15秒前
15秒前
15秒前
luoziwuhui完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661230
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744632
捐赠科研通 2931923
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569