Monitoring of Cotton Boll Opening Rate Based on UAV Multispectral Data

归一化差异植被指数 植被指数 环境科学 多光谱图像 植被(病理学) 航程(航空) 数据集 数学 遥感 农业工程 叶面积指数 统计 农学 地质学 工程类 病理 航空航天工程 生物 医学
作者
Yukun Wang,Chenyu Xiao,Yao Wang,Kexin Li,Keke Yu,Jijia Geng,Qiangzi Li,Jiutao Yang,Jie Zhang,Mingcai Zhang,Huaiyu Lu,Xin Du,Mingwei Du,Xiaoli Tian,Zhaohu Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 132-132 被引量:2
标识
DOI:10.3390/rs16010132
摘要

Defoliation and accelerating ripening are important measures for cotton mechanization, and judging the time of defoliation and accelerating the ripening and harvest of cotton relies heavily on the boll opening rate, making it a crucial factor to consider. The traditional methods of cotton opening rate determination are time-consuming, labor-intensive, destructive, and not suitable for a wide range of applications. In this study, the relationship between the change rate of the vegetation index obtained by the unmanned aerial vehicle multi-spectrum and the ground boll opening rate was established to realize rapid non-destructive testing of the boll opening rate. The normalized difference vegetation index (NDVI) and green normalized difference vegetation index (GNDVI) had good prediction ability for the boll opening rate. NDVI in the training set had an R2 of 0.912 and rRMSE of 15.387%, and the validation set performance had an R2 of 0.929 and rRMSE of 13.414%. GNDVI in the training set had an R2 of 0.901 and rRMSE of 16.318%, and the validation set performance had an R2 of 0.909 and rRMSE of 15.225%. The accuracies of the models based on GNDVI and NDVI were within the acceptable range. In terms of predictive models, random forests achieve the highest accuracy in predictions. Accurately predicting the cotton boll opening rate can support decision-making for harvest and harvest aid spray timing, as well as provide technical support for crop growth monitoring and precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助30
刚刚
LULU完成签到,获得积分10
1秒前
嗯哼应助缓慢的尔柳采纳,获得40
1秒前
2秒前
gguc完成签到,获得积分10
3秒前
啧啧啧啧完成签到 ,获得积分10
3秒前
one发布了新的文献求助10
4秒前
李健应助114422采纳,获得10
6秒前
我是老大应助欢呼妙菱采纳,获得20
6秒前
Czt完成签到,获得积分10
7秒前
莞莞类卿完成签到,获得积分10
8秒前
9秒前
lancer发布了新的文献求助10
10秒前
10秒前
Hanayu完成签到 ,获得积分10
11秒前
傲娇衬衫完成签到,获得积分20
12秒前
坚强亦丝应助liuliu采纳,获得10
14秒前
xiaoluoluo发布了新的文献求助10
15秒前
oceanao发布了新的文献求助10
16秒前
16秒前
RYAN发布了新的文献求助20
16秒前
18秒前
心之搁浅完成签到,获得积分10
19秒前
20秒前
21秒前
南湖大道的五三八完成签到,获得积分20
22秒前
114422发布了新的文献求助10
23秒前
青岩发布了新的文献求助10
23秒前
EasonYao发布了新的文献求助10
24秒前
无语的康乃馨完成签到,获得积分10
24秒前
24秒前
唐怡鑫发布了新的文献求助10
25秒前
彭于晏应助英勇的战斗机采纳,获得10
25秒前
HarrisonChen完成签到,获得积分10
25秒前
26秒前
26秒前
美丽碧曼完成签到,获得积分10
26秒前
星辰大海应助gg采纳,获得10
27秒前
27秒前
JamesPei应助wuxunxun2015采纳,获得10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262906
求助须知:如何正确求助?哪些是违规求助? 2903593
关于积分的说明 8325719
捐赠科研通 2573523
什么是DOI,文献DOI怎么找? 1398378
科研通“疑难数据库(出版商)”最低求助积分说明 654142
邀请新用户注册赠送积分活动 632696