An IMU-based ground reaction force estimation method and its application in walking balance assessment

地面反作用力 惯性测量装置 平衡(能力) 运动学 模拟 物理医学与康复 计算机科学 部队平台 康复 运动分析 计量单位 人工智能 物理疗法 医学 物理 经典力学 量子力学
作者
Xiangzhi Liu,Xiangliang Zhang,Bin Zhang,Bin Zeng,Zexia He,Tao Liu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2023.3347729
摘要

Walking is one of the most common daily movements of the human body. Therefore, quantitative evaluation of human walking has been commonly used to assist doctors in grasping the disease degree and rehabilitation process of patients in the clinic. Compared with the kinematic characteristics, the ground reaction force (GRF) during walking can directly reflect the dynamic characteristics of human walking. It can further help doctors understand the degree of muscle recovery and joint coordination of patients. This paper proposes a GRF estimation method based on the elastic elements and Newton-Euler equation hybrid driving GRF estimation method. Compared with the existing research, the innovations are as follows. i) The hardware system consists of only two inertial measurement units (IMUs) placed on shanks. The acquisition of the overall motion characteristics of human walking is realized through the simplified four-link walking model and the thigh prediction method. ii) The method was validated not only on 10 healthy subjects but also on 11 Parkinson’s patients and 10 stroke patients with normalized mean absolute errors (NMAEs) of 5.95%±1.32%, 6.09%±2.00%, 5.87%±1.59%. iii) This paper proposes a dynamic balance assessment method based on the acquired motion data and the estimated GRF. It evaluates the overall balance ability and fall risk at four key time points for all subjects recruited. Because of the low-cost system, ease of use, low motion interference and environmental constraints, and high estimation accuracy, the proposed GRF estimation method and walking balance automatic assessment have broad clinical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
皮肤科王东明完成签到,获得积分10
2秒前
黑大帅发布了新的文献求助10
3秒前
4秒前
所所应助皮肤科王东明采纳,获得10
4秒前
ww完成签到,获得积分10
5秒前
闾丘剑封发布了新的文献求助10
7秒前
智慧者发布了新的文献求助10
7秒前
银杏完成签到 ,获得积分10
7秒前
8秒前
基尔霍夫完成签到,获得积分10
9秒前
10秒前
sss2021发布了新的文献求助20
10秒前
11秒前
lzx发布了新的文献求助10
15秒前
学不会发布了新的文献求助10
15秒前
枫叶问海棠完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
为妳铭记完成签到 ,获得积分10
20秒前
20秒前
20秒前
葉鳳怡完成签到 ,获得积分10
22秒前
学不会完成签到,获得积分10
22秒前
25秒前
西风白马完成签到,获得积分10
25秒前
25秒前
29秒前
30秒前
31秒前
小蘑菇应助lzx采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
烟花应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得200
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174