An IMU-based ground reaction force estimation method and its application in walking balance assessment

地面反作用力 惯性测量装置 平衡(能力) 运动学 模拟 物理医学与康复 计算机科学 部队平台 康复 运动分析 计量单位 人工智能 物理疗法 医学 物理 经典力学 量子力学
作者
Xiangzhi Liu,Xiangliang Zhang,Bin Zhang,Bin Zeng,Zexia He,Tao Liu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2023.3347729
摘要

Walking is one of the most common daily movements of the human body. Therefore, quantitative evaluation of human walking has been commonly used to assist doctors in grasping the disease degree and rehabilitation process of patients in the clinic. Compared with the kinematic characteristics, the ground reaction force (GRF) during walking can directly reflect the dynamic characteristics of human walking. It can further help doctors understand the degree of muscle recovery and joint coordination of patients. This paper proposes a GRF estimation method based on the elastic elements and Newton-Euler equation hybrid driving GRF estimation method. Compared with the existing research, the innovations are as follows. i) The hardware system consists of only two inertial measurement units (IMUs) placed on shanks. The acquisition of the overall motion characteristics of human walking is realized through the simplified four-link walking model and the thigh prediction method. ii) The method was validated not only on 10 healthy subjects but also on 11 Parkinson’s patients and 10 stroke patients with normalized mean absolute errors (NMAEs) of 5.95%±1.32%, 6.09%±2.00%, 5.87%±1.59%. iii) This paper proposes a dynamic balance assessment method based on the acquired motion data and the estimated GRF. It evaluates the overall balance ability and fall risk at four key time points for all subjects recruited. Because of the low-cost system, ease of use, low motion interference and environmental constraints, and high estimation accuracy, the proposed GRF estimation method and walking balance automatic assessment have broad clinical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助天马行空采纳,获得10
刚刚
希望天下0贩的0应助00采纳,获得10
1秒前
yull完成签到,获得积分10
1秒前
可怜小爬虫完成签到 ,获得积分10
2秒前
常裤子发布了新的文献求助20
2秒前
怡然宛凝完成签到,获得积分10
2秒前
pebble完成签到,获得积分10
3秒前
煎饼煎饼完成签到,获得积分10
3秒前
笑点低靖仇完成签到,获得积分10
3秒前
3秒前
964230130完成签到,获得积分10
3秒前
彭于晏应助香氛采纳,获得10
4秒前
zhuiyu完成签到,获得积分10
4秒前
HXH完成签到,获得积分10
4秒前
小乐子完成签到,获得积分10
5秒前
mwang完成签到,获得积分10
5秒前
嘻嘻哈哈哈哈完成签到 ,获得积分10
5秒前
懦弱的易绿完成签到,获得积分10
5秒前
哈哈哈完成签到,获得积分10
6秒前
大香蕉完成签到,获得积分10
6秒前
6秒前
糕手完成签到 ,获得积分10
6秒前
无聊的万天完成签到,获得积分10
6秒前
唐唐88完成签到,获得积分10
7秒前
脆脆鲨完成签到 ,获得积分10
7秒前
小十七果完成签到,获得积分10
8秒前
8秒前
爱吃肉肉的手性分子完成签到,获得积分10
8秒前
8秒前
xue完成签到 ,获得积分10
8秒前
昨夜雨疏风骤完成签到,获得积分10
8秒前
8秒前
FashionBoy应助不散的和弦采纳,获得10
9秒前
9秒前
9秒前
xrf完成签到,获得积分10
9秒前
新新完成签到,获得积分10
10秒前
nn关闭了nn文献求助
10秒前
yamoon完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959