Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives

指纹(计算) 计算机科学 质量(理念) 药效学 风险分析(工程) 数据挖掘 计算生物学 传统医学 生化工程 医学 人工智能 药理学 生物 工程类 认识论 药代动力学 哲学
作者
Si Li,Xi Huang,Yuan Li,Rong Ding,Xuemei Wu,Ling Li,Canlin Li,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:55 (2): 353-374 被引量:25
标识
DOI:10.1080/10408347.2023.2290056
摘要

The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的访天完成签到,获得积分10
2秒前
科研通AI6.1应助smm采纳,获得10
2秒前
2秒前
Royalll发布了新的文献求助10
3秒前
zhoufz发布了新的文献求助10
3秒前
香蕉觅云应助虚拟的含灵采纳,获得10
3秒前
小虎发布了新的文献求助10
3秒前
乐乐应助小可不怕困难采纳,获得10
3秒前
siina发布了新的文献求助10
4秒前
拓跋妙梦发布了新的文献求助10
4秒前
4秒前
大模型应助PanLi采纳,获得30
5秒前
6秒前
南方有故人完成签到,获得积分10
6秒前
6秒前
RocaY发布了新的文献求助10
6秒前
长情的千愁完成签到,获得积分10
8秒前
Jason完成签到 ,获得积分10
10秒前
石石刘完成签到 ,获得积分10
10秒前
11秒前
科研通AI6.1应助luo采纳,获得10
12秒前
风中远山完成签到,获得积分10
12秒前
若杉完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
A羊_完成签到,获得积分20
13秒前
Pilule完成签到 ,获得积分10
13秒前
FashionBoy应助Isaiah采纳,获得10
13秒前
科研通AI6.1应助柔弱雅彤采纳,获得10
13秒前
14秒前
14秒前
14秒前
烟花应助阿紫采纳,获得10
15秒前
15秒前
佳丽完成签到,获得积分10
15秒前
mltyyds完成签到,获得积分10
16秒前
17秒前
17秒前
勤恳易谙发布了新的文献求助10
17秒前
高兴的平露完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106