Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives

指纹(计算) 计算机科学 质量(理念) 药效学 风险分析(工程) 数据挖掘 计算生物学 传统医学 生化工程 医学 人工智能 药理学 生物 工程类 认识论 药代动力学 哲学
作者
Si Li,Xi Huang,Yuan Li,Rong Ding,Xuemei Wu,Ling Li,Canlin Li,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Taylor & Francis]
卷期号:: 1-22 被引量:11
标识
DOI:10.1080/10408347.2023.2290056
摘要

The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朱妮妮完成签到,获得积分10
1秒前
雨渺清空完成签到 ,获得积分10
1秒前
2秒前
2秒前
terence完成签到,获得积分0
3秒前
5秒前
6秒前
6秒前
小宋同学不能怂完成签到 ,获得积分10
7秒前
靓丽紫真发布了新的文献求助10
7秒前
wlnhyF发布了新的文献求助10
7秒前
卡琳完成签到 ,获得积分10
8秒前
9秒前
10秒前
11秒前
11秒前
11秒前
6633发布了新的文献求助10
14秒前
777发布了新的文献求助10
17秒前
19秒前
xu完成签到 ,获得积分10
20秒前
21秒前
kenny完成签到,获得积分10
22秒前
华仔应助哀家长头发啦采纳,获得10
22秒前
吃饭加汤发布了新的文献求助10
22秒前
大意的绿蓉完成签到,获得积分10
24秒前
高高尔容发布了新的文献求助10
26秒前
今后应助素歌采纳,获得10
28秒前
缄默完成签到,获得积分20
30秒前
33秒前
zho应助liu采纳,获得10
36秒前
桐桐应助6633采纳,获得10
37秒前
wbh发布了新的文献求助10
39秒前
英姑应助黄晃晃采纳,获得10
39秒前
48秒前
吃饭加汤完成签到,获得积分10
50秒前
51秒前
香蕉觅云应助wbh采纳,获得10
51秒前
素歌发布了新的文献求助10
52秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967