Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives

指纹(计算) 计算机科学 质量(理念) 药效学 风险分析(工程) 数据挖掘 计算生物学 传统医学 生化工程 医学 人工智能 药理学 生物 工程类 认识论 药代动力学 哲学
作者
Si Li,Xi Huang,Yuan Li,Rong Ding,Xuemei Wu,Ling Li,Canlin Li,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:55 (2): 353-374 被引量:25
标识
DOI:10.1080/10408347.2023.2290056
摘要

The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咻咻咻超级飞侠完成签到 ,获得积分10
1秒前
llllllll完成签到,获得积分10
2秒前
4秒前
嘿嘿发布了新的文献求助10
5秒前
helpme完成签到,获得积分10
5秒前
wei完成签到,获得积分10
5秒前
优美紫槐应助观锦鸢采纳,获得10
6秒前
苦命吗喽完成签到,获得积分20
7秒前
郭昱嘉完成签到,获得积分20
8秒前
希望天下0贩的0应助肖扬采纳,获得10
8秒前
robin_1217完成签到,获得积分10
8秒前
高兴宝贝完成签到 ,获得积分10
9秒前
叶光大完成签到 ,获得积分10
9秒前
戳戳完成签到 ,获得积分10
9秒前
Michael.Hu发布了新的文献求助10
11秒前
李健应助搞怪冷之采纳,获得10
11秒前
尤文昊发布了新的文献求助10
12秒前
Ou完成签到,获得积分10
12秒前
专注之双完成签到,获得积分10
12秒前
ivan025发布了新的文献求助50
13秒前
蓝天应助xxxx采纳,获得10
14秒前
Galaxy8完成签到,获得积分10
14秒前
wanci应助阿母死撞采纳,获得10
16秒前
16秒前
16秒前
WYB完成签到,获得积分10
16秒前
17秒前
耍酷小松鼠完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
=.=发布了新的文献求助30
20秒前
无私的电灯胆完成签到,获得积分10
20秒前
wanci应助喜悦的海采纳,获得10
21秒前
独特的哈密瓜数据线完成签到,获得积分10
22秒前
小天草水母完成签到 ,获得积分10
22秒前
suolonglong完成签到,获得积分10
23秒前
一隅发布了新的文献求助10
24秒前
肖扬发布了新的文献求助10
24秒前
magneto完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733454
求助须知:如何正确求助?哪些是违规求助? 5349067
关于积分的说明 15324172
捐赠科研通 4878567
什么是DOI,文献DOI怎么找? 2621289
邀请新用户注册赠送积分活动 1570406
关于科研通互助平台的介绍 1527330