Spectrum-Effect Relationship in Chinese Herbal Medicine: Current Status and Future Perspectives

指纹(计算) 计算机科学 质量(理念) 药效学 风险分析(工程) 数据挖掘 计算生物学 传统医学 生化工程 医学 人工智能 药理学 生物 工程类 认识论 药代动力学 哲学
作者
Si Li,Xi Huang,Yuan Li,Rong Ding,Xuemei Wu,Ling Li,Canlin Li,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:55 (2): 353-374 被引量:21
标识
DOI:10.1080/10408347.2023.2290056
摘要

The quality of Chinese herbal medicine (CHM) directly impacts clinical efficacy and safety. Fingerprint technology is an internationally recognized method for evaluating the quality of CHM. However, the existing quality evaluation models based on fingerprint technology have blocked the ability to assess the internal quality of CHM and cannot comprehensively reflect the correlation between pharmacodynamic information and active constituents. Through mathematical methods, a connection between the "Spectrum" (fingerprint) and the "Effect" (pharmacodynamic data) was established to conduct a spectrum-effect relationship (SER) of CHM to unravel the active component information associated with the pharmacodynamic activity. Consequently, SER can efficiently address the limitations of the segmentation of chemical components and pharmacodynamic effect in CHM and further improve the quality evaluation of CHM. This review focuses on the recent research progress of SER in the field of CHM, including the establishment of fingerprint, the selection of data analysis methods, and their recent applications in the field of CHM. Various advanced fingerprint techniques are introduced, followed by the data analysis methods used in recent years are summarized. Finally, the applications of SER based on different research subjects are described in detail. In addition, the advantages of combining SER with other data are discussed through practical applications, and the research on SER is summarized and prospected. This review proves the validity and development potential of the SER and provides a reference for the development and application of quality evaluation methods for CHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七友完成签到,获得积分10
1秒前
1秒前
1秒前
安详乌龟完成签到,获得积分0
2秒前
FashionBoy应助亦晴采纳,获得10
2秒前
2秒前
丘比特应助龙星采纳,获得10
2秒前
关我屁事发布了新的文献求助10
2秒前
acd发布了新的文献求助10
2秒前
辅助成灾发布了新的文献求助10
3秒前
天天快乐应助寒冷薯片采纳,获得10
3秒前
lilx发布了新的文献求助10
3秒前
隐形的妙之完成签到,获得积分10
3秒前
zj发布了新的文献求助10
4秒前
4秒前
英姑应助论文顺利采纳,获得50
4秒前
自由如天完成签到,获得积分10
4秒前
润森发布了新的文献求助10
4秒前
臭屁大王发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
我是老大应助Wm200149采纳,获得10
5秒前
杨杨onng发布了新的文献求助10
5秒前
NNi发布了新的文献求助10
6秒前
6秒前
ZCM发布了新的文献求助10
6秒前
6秒前
6秒前
yz发布了新的文献求助10
6秒前
7秒前
青石发布了新的文献求助10
7秒前
jin发布了新的文献求助10
7秒前
彭于晏应助科研领军人物采纳,获得10
7秒前
NexusExplorer应助李卿采纳,获得10
8秒前
韩悦关注了科研通微信公众号
8秒前
李爱国应助小玲子采纳,获得30
8秒前
9秒前
una发布了新的文献求助10
9秒前
SCO发布了新的文献求助10
9秒前
orixero应助漂亮竺采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233