An integrated strategy for the discovery of quality marker of Dactylicapnos scandens based on phytochemical analysis, network pharmacology and activity screening

植物化学 化学 植物化学 传统医学 药理学 计算生物学 生物化学 生物 医学 有机化学
作者
Hui Jiang,Tao Hou,Cuiyan Cao,Yanfang Liu,Q. N. Xu,Chaoran Wang,Jixia Wang,Xingya Xue,Xinmiao Liang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:241: 115969-115969
标识
DOI:10.1016/j.jpba.2024.115969
摘要

Dactylicapnos scandens (D. scandens) is an ethnic medicine commonly used for the treatment of analgesia. In this study, an integrated strategy was proposed for the quality evaluation of D. scandens based on "phytochemistry-network pharmacology-effectiveness-specificity" to discover and determine the quality marker (Q-marker) related to analgesia. First, phytochemical analysis was conducted using UPLC-Q-TOF-MS/MS and a self-built compound library, and 19 components were identified in D. scandens extracts. Next, the "compounds-targets" network was constructed to predict the relevant targets and compounds related to analgesia. Then, the analgesic activity of related compounds was verified through dynamic mass redistribution (DMR) assays on D2 and Mu receptors, and 5 components showed D2 antagonistic activity with IC50 values of 39.2 ± 14.7 µM, 5.46 ± 0.37 µM, 17.5 ± 1.61 µM, 7.89 ± 0.79 µM and 3.29 ± 0.73 µM, respectively. Subsequently, nine ingredients were selected as Q-markers in consideration of specificity, effectiveness and measurability, and their content was measured in 12 batches of D. scandens. Furthermore, the hierarchical cluster analysis and heatmap results indicated that the selected Q-marker could be used to discriminate D. scandens and that the content of Q-marker varied greatly in different batches. Our study shows that this strategy provides a useful method to discover the potential Q-markers of traditional Chinese medicine and offers a practical workflow for exploring the quality consistency of medicinal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助尘雾采纳,获得10
2秒前
2秒前
12345完成签到,获得积分10
3秒前
Lialilico完成签到,获得积分10
4秒前
Akim应助我必做出来采纳,获得50
4秒前
5秒前
随机起的名完成签到,获得积分10
5秒前
Owen应助努力的小狗屁采纳,获得10
6秒前
6秒前
vuig完成签到 ,获得积分10
6秒前
哈哈哈的一笑完成签到,获得积分10
6秒前
6秒前
Emma完成签到,获得积分10
6秒前
7秒前
7秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
7秒前
huanger完成签到,获得积分10
7秒前
Tayzon完成签到 ,获得积分10
7秒前
我测你码完成签到,获得积分10
7秒前
超级宇宙二踢脚完成签到,获得积分10
8秒前
8秒前
9秒前
大气小新完成签到,获得积分10
9秒前
ILS完成签到 ,获得积分10
9秒前
Orange应助澜生采纳,获得10
10秒前
lin完成签到,获得积分10
11秒前
Ares发布了新的文献求助10
11秒前
11秒前
谭平完成签到 ,获得积分10
11秒前
12秒前
淡定紫菱完成签到,获得积分10
12秒前
所所应助HYH采纳,获得20
12秒前
12秒前
木香完成签到,获得积分10
13秒前
尘雾发布了新的文献求助10
14秒前
15秒前
高鑫完成签到 ,获得积分10
15秒前
英姑应助dd采纳,获得10
15秒前
Chan0501关注了科研通微信公众号
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794