A Hybrid Corpus based Fine-grained Semantic Alignment Method for Pre-trained Language Model of Ancient Chinese Poetry

计算机科学 判决 自然语言处理 语义学(计算机科学) 人工智能 Glyph(数据可视化) 领域(数学分析) 可视化 程序设计语言 数学 数学分析
作者
Jie Hong,Tingting He,Jie Mei,Ming Dong,Zheming Zhang,Xinhui Tu
标识
DOI:10.1109/bigdata59044.2023.10386747
摘要

Ancient Chinese poetry (ACP) is a vital component of Chinese traditional culture. Enhancing the performance of related downstream tasks demands the development of high-quality pre-trained language models (PLMs) dedicated to ACP. Notably, the semantics of ACP significantly differ from modern Chinese. Existing PLMs have limited knowledge of ACP and are inadequately aligned with the semantic space of modern Chinese, which constrains the utility for tasks related to ACP. In this paper, we propose a fine-tuning strategy to establish a precise alignment between ACP and modern Chinese semantics on sentence level. This strategy involves the inclusion of corresponding modern Chinese translations alongside original ancient poems, creating a hybrid corpus. This corpus facilitates a more effective transfer of knowledge from existing PLMs to the domain of ACP. Furthermore, we employ a training strategy based on a glyph-based foundational PLM, enabling meticulous fine-tuning. Consequently, we develop a specialized PLM named CP-ChineseBERT. To evaluate the effectiveness of our proposed strategies, we conducted experiments on two real-world datasets, focusing on tasks related to ACP sentiment classification and ACP title prediction. The experimental results demonstrate the significant improvements in performance achieved through our innovative approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ulrica发布了新的文献求助30
刚刚
阿妍碎碎念完成签到,获得积分10
刚刚
ding应助charih采纳,获得10
1秒前
HHHH完成签到,获得积分10
1秒前
毛豆应助77采纳,获得10
2秒前
2秒前
2秒前
断舍离发布了新的文献求助10
4秒前
闻元杰发布了新的文献求助10
4秒前
4秒前
jiao发布了新的文献求助10
4秒前
4秒前
传奇3应助咕咕咕冒泡采纳,获得10
5秒前
moxin完成签到,获得积分10
5秒前
Night完成签到,获得积分10
5秒前
沉静盼易完成签到,获得积分10
6秒前
kingsley320完成签到,获得积分10
6秒前
艾哈的瞳完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
ing嘻嘻嘻发布了新的文献求助10
8秒前
9秒前
辛勤的大帅完成签到,获得积分10
11秒前
科研通AI2S应助卯一采纳,获得10
11秒前
上官听白完成签到,获得积分10
11秒前
11秒前
坚强依波发布了新的文献求助10
11秒前
老班长完成签到,获得积分10
11秒前
uh完成签到,获得积分10
11秒前
summy发布了新的文献求助10
12秒前
跳跃靖发布了新的文献求助10
12秒前
Xccccc完成签到 ,获得积分10
13秒前
Jasper应助追寻迎夏采纳,获得10
13秒前
KevinDante完成签到 ,获得积分10
13秒前
13秒前
simon完成签到,获得积分10
13秒前
老班长发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547