Data-model linkage prediction of tool remaining useful life based on deep feature fusion and Wiener process

刀具磨损 可解释性 过程(计算) 特征(语言学) 数据挖掘 计算机科学 机械加工 人工智能 工程类 机器学习 语言学 机械工程 操作系统 哲学
作者
Xuebing Li,Xianli Liu,Caixu Yue,Lihui Wang,Steven Y. Liang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:73: 19-38 被引量:16
标识
DOI:10.1016/j.jmsy.2024.01.008
摘要

Accurately predicting the tool remaining useful life (RUL) is critical for maximizing tool utilization and saving machining costs. Various physical model-based or data-driven prediction methods have been developed and successfully applied in different machining operations. However, many uncertain factors affect tool RUL during the cutting process, making it challenging to create a precise physical model to characterize the degradation of tool performance. The success of the purely data-driven technique depends on the amount and quality of the training samples, it does not consider the physical law of tool wear, and the interpretability of the prediction results is poor. This paper presents a data-model linkage approach for tool RUL prediction based on deep feature fusion and Wiener process to address the above limitations. A convolutional stacked bidirectional long short-term memory network with time-space attention mechanism (CSBLSTM-TSAM) is developed in the data-driven module to fuse the multi-sensor signals collected during the cutting process and then obtain the mapping relationship between signal features and tool wear values. In the physical modeling module, a three-stage tool RUL prediction model based on the nonlinear Wiener process is established by considering the evolution law of different wear stages and multi-layer uncertainty, and the corresponding probability density function is derived. The real-time estimated tool wear of the data-driven module is used as the observed value of the physical model, and the model parameters are dynamically updated by the weight-optimized particle filter (WOPF) algorithm under a Bayesian framework, thereby realizing the data-model linkage tool RUL prediction. Milling experiments demonstrate that the proposed method not only improves RUL prediction accuracy, but also has good generalization ability and robustness for prediction tasks under different working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的涵柳完成签到,获得积分20
1秒前
从容芮应助lambda采纳,获得200
4秒前
她的城完成签到,获得积分0
8秒前
鹏gg完成签到 ,获得积分10
11秒前
居居侠完成签到 ,获得积分10
12秒前
懵懂的毛豆完成签到,获得积分10
21秒前
晨曦完成签到 ,获得积分10
25秒前
Gary完成签到 ,获得积分10
28秒前
大模型应助Helicopter采纳,获得10
35秒前
拾壹完成签到,获得积分10
35秒前
空的境界完成签到 ,获得积分10
36秒前
斯文败类应助丛玉林采纳,获得10
37秒前
40秒前
陈1992完成签到 ,获得积分10
42秒前
42秒前
46秒前
NiceSunnyDay完成签到 ,获得积分10
47秒前
Helicopter发布了新的文献求助10
47秒前
丛玉林发布了新的文献求助10
50秒前
蓝意完成签到,获得积分0
54秒前
科目三应助丛玉林采纳,获得10
58秒前
老衲完成签到,获得积分0
1分钟前
俊秀的思山完成签到,获得积分10
1分钟前
研友_VZG7GZ应助华无剑采纳,获得30
1分钟前
zlx完成签到 ,获得积分10
1分钟前
Isaacwg168完成签到 ,获得积分10
1分钟前
Azhe完成签到,获得积分10
1分钟前
1分钟前
NorthWang完成签到,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
华无剑发布了新的文献求助30
1分钟前
研友_LOqqmZ完成签到 ,获得积分10
1分钟前
Jeremy637完成签到 ,获得积分10
1分钟前
无情的冰香完成签到 ,获得积分10
1分钟前
Azhe发布了新的文献求助10
1分钟前
沙子完成签到 ,获得积分10
1分钟前
华无剑完成签到,获得积分10
1分钟前
1分钟前
lambda完成签到,获得积分10
1分钟前
苦行僧完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674499
求助须知:如何正确求助?哪些是违规求助? 3229813
关于积分的说明 9787137
捐赠科研通 2940387
什么是DOI,文献DOI怎么找? 1611904
邀请新用户注册赠送积分活动 761060
科研通“疑难数据库(出版商)”最低求助积分说明 736471