Automated detection of vitritis using ultrawide-field fundus photographs and deep learning

人工智能 模式识别(心理学) 眼底(子宫) 计算机科学 分级(工程) 卷积神经网络 眼科 医学 工程类 土木工程
作者
Bayram Mhibik,Desire Kouadio,Camille Jung,Chemsedine Bchir,Adélaïde Toutée,Federico Maestri,Karmen Gulic,Alexandra Mière,Alessandro Falcione,Myriam Touati,Dominique Monnet,Bahram Bodaghi,Sara Touhami
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/iae.0000000000004049
摘要

Purpose: Evaluate the performance of a deep learning (DL) algorithm for the automated detection and grading of vitritis on ultra-wide field (UWF) imaging. Design: Cross-sectional non-interventional study. Method: UWF fundus retinophotographs of uveitis patients were used. Vitreous haze was defined according to the 6 steps of the SUN classification. The DL framework TensorFlow and the DenseNet121 convolutional neural network were used to perform the classification task. The best fitted model was tested in a validation study. Results: 1181 images were included. The performance of the model for the detection of vitritis was good with a sensitivity of 91%, a specificity of 89%, an accuracy of 0.90 and an area under the ROC curve of 0.97. When used on an external set of images, the accuracy for the detection of vitritis was 0.78. The accuracy to classify vitritis in one of the 6 SUN grades was limited (0.61), but improved to 0.75 when the grades were grouped in three categories. When accepting an error of one grade, the accuracy for the 6-class classification increased to 0.90, suggesting the need for a larger sample to improve the model performances. Conclusion: We describe a new DL model based on UWF fundus imaging that produces an efficient tool for the detection of vitritis. The performance of the model for the grading into 3 categories of increasing vitritis severity was acceptable. The performance for the 6-class grading of vitritis was limited but can probably be improved with a larger set of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的藏鸟完成签到,获得积分10
1秒前
小洪俊熙完成签到,获得积分10
2秒前
小杨发布了新的文献求助10
3秒前
JUAN完成签到,获得积分10
4秒前
不信人间有白头完成签到 ,获得积分10
4秒前
明亮的代灵完成签到 ,获得积分10
4秒前
嗯哼完成签到 ,获得积分10
7秒前
liaomr完成签到 ,获得积分10
10秒前
哈哈完成签到 ,获得积分10
11秒前
11秒前
八八九九九1完成签到,获得积分10
11秒前
ZHZ完成签到,获得积分10
12秒前
OeO完成签到 ,获得积分10
13秒前
Xiaoming完成签到,获得积分0
13秒前
哈哈哈发布了新的文献求助10
15秒前
lang完成签到,获得积分10
15秒前
17秒前
忐忑的天真完成签到 ,获得积分10
17秒前
舒适数据线完成签到,获得积分10
18秒前
优雅的千雁完成签到,获得积分10
19秒前
zz完成签到 ,获得积分10
19秒前
没用的三轮完成签到,获得积分10
19秒前
zw完成签到,获得积分10
20秒前
啊哈啊哈额完成签到,获得积分10
21秒前
土豆淀粉完成签到 ,获得积分10
22秒前
23秒前
青黛完成签到 ,获得积分10
26秒前
爱吃蒸蛋完成签到,获得积分10
27秒前
mayberichard完成签到,获得积分10
27秒前
28秒前
火星上莛完成签到 ,获得积分10
29秒前
fanzi完成签到 ,获得积分10
29秒前
29秒前
chinh完成签到,获得积分10
32秒前
unfeeling8完成签到 ,获得积分10
34秒前
JUNE发布了新的文献求助30
34秒前
35秒前
花花2024完成签到 ,获得积分10
37秒前
胖胖橘完成签到 ,获得积分10
38秒前
独指蜗牛完成签到 ,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015