Automated detection of vitritis using ultrawide-field fundus photographs and deep learning

人工智能 模式识别(心理学) 眼底(子宫) 计算机科学 分级(工程) 卷积神经网络 眼科 医学 工程类 土木工程
作者
Bayram Mhibik,Desire Kouadio,Camille Jung,Chemsedine Bchir,Adélaïde Toutée,Federico Maestri,Karmen Gulic,Alexandra Mière,Alessandro Falcione,Myriam Touati,Dominique Monnet,Bahram Bodaghi,Sara Touhami
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/iae.0000000000004049
摘要

Purpose: Evaluate the performance of a deep learning (DL) algorithm for the automated detection and grading of vitritis on ultra-wide field (UWF) imaging. Design: Cross-sectional non-interventional study. Method: UWF fundus retinophotographs of uveitis patients were used. Vitreous haze was defined according to the 6 steps of the SUN classification. The DL framework TensorFlow and the DenseNet121 convolutional neural network were used to perform the classification task. The best fitted model was tested in a validation study. Results: 1181 images were included. The performance of the model for the detection of vitritis was good with a sensitivity of 91%, a specificity of 89%, an accuracy of 0.90 and an area under the ROC curve of 0.97. When used on an external set of images, the accuracy for the detection of vitritis was 0.78. The accuracy to classify vitritis in one of the 6 SUN grades was limited (0.61), but improved to 0.75 when the grades were grouped in three categories. When accepting an error of one grade, the accuracy for the 6-class classification increased to 0.90, suggesting the need for a larger sample to improve the model performances. Conclusion: We describe a new DL model based on UWF fundus imaging that produces an efficient tool for the detection of vitritis. The performance of the model for the grading into 3 categories of increasing vitritis severity was acceptable. The performance for the 6-class grading of vitritis was limited but can probably be improved with a larger set of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
苦逼发布了新的文献求助10
2秒前
头发多多完成签到,获得积分10
4秒前
方方公主发布了新的文献求助10
4秒前
Tizzy发布了新的文献求助20
5秒前
稳重海豚完成签到,获得积分10
5秒前
贪玩豪发布了新的文献求助10
5秒前
azhu完成签到,获得积分10
5秒前
6秒前
淡定的海瑶完成签到,获得积分10
6秒前
顾初安发布了新的文献求助10
7秒前
仙子狗尾巴花完成签到,获得积分10
8秒前
8秒前
9秒前
传奇3应助美好的小馒头采纳,获得10
9秒前
chenxxx完成签到,获得积分10
10秒前
领导范儿应助墨兮采纳,获得10
10秒前
小蘑菇应助MgZn采纳,获得10
11秒前
dududu完成签到,获得积分10
11秒前
11秒前
lkk发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
12秒前
顺心灵寒发布了新的文献求助10
13秒前
科研通AI2S应助甜甜的以筠采纳,获得10
15秒前
李健的小迷弟应助JL采纳,获得10
16秒前
wwz应助多情的白山采纳,获得10
16秒前
顾初安完成签到,获得积分10
16秒前
开朗的踏歌完成签到,获得积分10
17秒前
chenxxx发布了新的文献求助10
17秒前
无情的盼兰完成签到,获得积分10
17秒前
18秒前
yan发布了新的文献求助30
19秒前
顺心灵寒完成签到,获得积分10
19秒前
Daisy完成签到,获得积分10
19秒前
Cope完成签到 ,获得积分10
20秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458