Automated detection of vitritis using ultrawide-field fundus photographs and deep learning

人工智能 模式识别(心理学) 眼底(子宫) 计算机科学 分级(工程) 卷积神经网络 眼科 医学 工程类 土木工程
作者
Bayram Mhibik,Desire Kouadio,Camille Jung,Chemsedine Bchir,Adélaïde Toutée,Federico Maestri,Karmen Gulic,Alexandra Mière,Alessandro Falcione,Myriam Touati,Dominique Monnet,Bahram Bodaghi,Sara Touhami
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/iae.0000000000004049
摘要

Purpose: Evaluate the performance of a deep learning (DL) algorithm for the automated detection and grading of vitritis on ultra-wide field (UWF) imaging. Design: Cross-sectional non-interventional study. Method: UWF fundus retinophotographs of uveitis patients were used. Vitreous haze was defined according to the 6 steps of the SUN classification. The DL framework TensorFlow and the DenseNet121 convolutional neural network were used to perform the classification task. The best fitted model was tested in a validation study. Results: 1181 images were included. The performance of the model for the detection of vitritis was good with a sensitivity of 91%, a specificity of 89%, an accuracy of 0.90 and an area under the ROC curve of 0.97. When used on an external set of images, the accuracy for the detection of vitritis was 0.78. The accuracy to classify vitritis in one of the 6 SUN grades was limited (0.61), but improved to 0.75 when the grades were grouped in three categories. When accepting an error of one grade, the accuracy for the 6-class classification increased to 0.90, suggesting the need for a larger sample to improve the model performances. Conclusion: We describe a new DL model based on UWF fundus imaging that produces an efficient tool for the detection of vitritis. The performance of the model for the grading into 3 categories of increasing vitritis severity was acceptable. The performance for the 6-class grading of vitritis was limited but can probably be improved with a larger set of images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎土土发布了新的文献求助50
1秒前
1秒前
大抽是谁发布了新的文献求助10
2秒前
2秒前
李健的小迷弟应助公茂源采纳,获得30
2秒前
失眠的凝雁完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
Menand完成签到,获得积分10
3秒前
学者发布了新的文献求助10
3秒前
清新完成签到,获得积分10
3秒前
陶弈衡完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
愉快盼曼发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
nemo发布了新的文献求助10
9秒前
学术蝗虫完成签到,获得积分10
9秒前
justin完成签到,获得积分10
10秒前
西瓜啵啵完成签到,获得积分10
12秒前
小周完成签到,获得积分10
12秒前
Louki完成签到 ,获得积分10
12秒前
温暖的颜演完成签到 ,获得积分10
13秒前
yudandan@CJLU发布了新的文献求助10
14秒前
科研小民工应助_呱_采纳,获得50
14秒前
愉快盼曼完成签到,获得积分20
14秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
13679165979发布了新的文献求助10
16秒前
温暖的钻石完成签到,获得积分10
16秒前
科研通AI5应助赖道之采纳,获得10
16秒前
17秒前
苏卿应助Eric采纳,获得10
17秒前
思源应助hhzz采纳,获得10
18秒前
红红完成签到,获得积分10
21秒前
瑶一瑶发布了新的文献求助10
21秒前
NexusExplorer应助刘鹏宇采纳,获得10
21秒前
roselau完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808