Automated detection of vitritis using ultrawide-field fundus photographs and deep learning

人工智能 模式识别(心理学) 眼底(子宫) 计算机科学 分级(工程) 卷积神经网络 眼科 医学 工程类 土木工程
作者
Bayram Mhibik,Desire Kouadio,Camille Jung,Chemsedine Bchir,Adélaïde Toutée,Federico Maestri,Karmen Gulic,Alexandra Mière,Alessandro Falcione,Myriam Touati,Dominique Monnet,Bahram Bodaghi,Sara Touhami
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/iae.0000000000004049
摘要

Purpose: Evaluate the performance of a deep learning (DL) algorithm for the automated detection and grading of vitritis on ultra-wide field (UWF) imaging. Design: Cross-sectional non-interventional study. Method: UWF fundus retinophotographs of uveitis patients were used. Vitreous haze was defined according to the 6 steps of the SUN classification. The DL framework TensorFlow and the DenseNet121 convolutional neural network were used to perform the classification task. The best fitted model was tested in a validation study. Results: 1181 images were included. The performance of the model for the detection of vitritis was good with a sensitivity of 91%, a specificity of 89%, an accuracy of 0.90 and an area under the ROC curve of 0.97. When used on an external set of images, the accuracy for the detection of vitritis was 0.78. The accuracy to classify vitritis in one of the 6 SUN grades was limited (0.61), but improved to 0.75 when the grades were grouped in three categories. When accepting an error of one grade, the accuracy for the 6-class classification increased to 0.90, suggesting the need for a larger sample to improve the model performances. Conclusion: We describe a new DL model based on UWF fundus imaging that produces an efficient tool for the detection of vitritis. The performance of the model for the grading into 3 categories of increasing vitritis severity was acceptable. The performance for the 6-class grading of vitritis was limited but can probably be improved with a larger set of images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
0109完成签到,获得积分10
刚刚
刚刚
刚刚
李爱国应助ginger采纳,获得10
1秒前
1秒前
SuperWR完成签到,获得积分10
1秒前
小乌龟完成签到,获得积分10
1秒前
Ffgg发布了新的文献求助10
2秒前
wanci应助自由颤采纳,获得10
2秒前
2秒前
甜美的冰姬完成签到,获得积分10
3秒前
qqq发布了新的文献求助10
3秒前
DX完成签到,获得积分10
3秒前
CodeCraft应助know采纳,获得10
3秒前
3秒前
3秒前
4秒前
liyyyyy完成签到,获得积分20
4秒前
英俊青旋完成签到,获得积分10
4秒前
kiminonawa发布了新的文献求助10
4秒前
heqiancan完成签到,获得积分10
4秒前
徐志豪完成签到,获得积分20
5秒前
mins发布了新的文献求助10
6秒前
非布司他发布了新的文献求助10
6秒前
6秒前
7秒前
布偶2007完成签到,获得积分10
7秒前
亗sui发布了新的文献求助10
7秒前
自然浩阑发布了新的文献求助10
7秒前
方法完成签到,获得积分10
7秒前
liyyyyy发布了新的文献求助10
8秒前
害羞的醉卉完成签到 ,获得积分10
8秒前
Vivifang应助Chiwen采纳,获得10
8秒前
XP完成签到 ,获得积分10
9秒前
9秒前
陈辰晨发布了新的文献求助30
9秒前
木木完成签到,获得积分10
10秒前
sikhwan_发布了新的文献求助30
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708093
求助须知:如何正确求助?哪些是违规求助? 5186941
关于积分的说明 15252667
捐赠科研通 4861172
什么是DOI,文献DOI怎么找? 2609274
邀请新用户注册赠送积分活动 1559914
关于科研通互助平台的介绍 1517692