ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation

编码器 分割 计算机科学 人工智能 图像分割 深度学习 瓶颈 模式识别(心理学) 计算机视觉 嵌入式系统 操作系统
作者
W. Zhang,Shanxiong Chen,Yuqi Ma,Yu Liu,Xu Cao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108005-108005 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108005
摘要

Medical image segmentation is a crucial topic in medical image processing. Accurately segmenting brain tumor regions from multimodal MRI scans is essential for clinical diagnosis and survival prediction. However, similar intensity distributions, variable tumor shapes, and fuzzy boundaries pose severe challenges for brain tumor segmentation. Traditional segmentation networks based on UNet struggle to establish explicit long-range dependencies from the feature space due to the limitations of the CNN receptive field. This is particularly crucial for dense prediction tasks such as brain tumor segmentation. Recent works have incorporated the powerful global modeling capability of Transformer into UNet to achieve more precise segmentation results. Nevertheless, these methods encounter some issues: (1) the global information is often modeled by simply stacking Transformer layers for a specific module, resulting in high computational complexity and underutilization of the potential of the UNet architecture; (2) the rich boundary information of tumor subregions in multi-scale features is often overlooked. Motivated by these challenges, we propose an advanced fusion of Transformer with UNet by reexamining the core three parts (encoder, bottleneck, and skip connections). Firstly, we introduce a CNN-Transformer module in the encoder to replace the traditional CNN module, enabling the capture of deep spatial dependencies from input images. To address high-level semantic information, we incorporate a computationally efficient spatial-channel attention layer in the bottleneck for global interaction, highlighting important semantic features from the encoder path output. For irregular lesions, we fuse the multi-scale features from the encoder output and the decoder features in the skip connections by calculating cross-attention. This adaptive querying of valuable information from multi-scale features enhances the boundary localization ability of the decoder path and suppresses redundant features with low correlation. Compared to existing methods, our model further enhances the learning capacity of the overall UNet architecture while maintaining low computational complexity. Experimental results on the BraTS2018 and BraTS2020 datasets for brain tumor segmentation tasks demonstrate that our model achieves comparable or superior results compared to recent CNN or Transformer-based models. The average DSC and HD95 on the two datasets are 0.854, 6.688, and 0.862, 5.455 respectively. At the same time, our model achieves optimal segmentation of Enhancing tumors, showcasing the effectiveness of our method. Our code will be made publicly available at https://github.com/wzhangck/ETUnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐齐巴宾发布了新的文献求助10
刚刚
心灵美诗霜完成签到 ,获得积分10
刚刚
土木搬砖法律完成签到,获得积分10
刚刚
淡挞完成签到 ,获得积分10
1秒前
hou发布了新的文献求助10
2秒前
2秒前
一顿吃不饱完成签到,获得积分0
2秒前
笛子完成签到,获得积分10
3秒前
顾矜应助郝宝真采纳,获得10
3秒前
4秒前
科目三应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
夏来应助科研通管家采纳,获得10
6秒前
科研通AI2S应助皮灵犀采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
Garry应助科研通管家采纳,获得10
6秒前
夏来应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
7秒前
夏来应助科研通管家采纳,获得10
7秒前
7秒前
嘘嘘完成签到,获得积分10
8秒前
Lynn完成签到,获得积分20
8秒前
925完成签到,获得积分10
8秒前
8秒前
9秒前
xiaominza应助TheDing采纳,获得10
10秒前
寒冷的夜蓉完成签到,获得积分10
10秒前
maque4004完成签到,获得积分10
10秒前
Hello应助缥缈的绿兰采纳,获得10
11秒前
123应助1111采纳,获得10
11秒前
Erin完成签到,获得积分10
12秒前
乌云乌云快走开完成签到,获得积分10
13秒前
可耐的白山完成签到,获得积分10
13秒前
哦哦完成签到,获得积分10
13秒前
舟桅发布了新的文献求助10
13秒前
Naive完成签到,获得积分20
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134170
求助须知:如何正确求助?哪些是违规求助? 2785077
关于积分的说明 7769993
捐赠科研通 2440590
什么是DOI,文献DOI怎么找? 1297488
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792