ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation

编码器 分割 计算机科学 人工智能 图像分割 深度学习 瓶颈 模式识别(心理学) 计算机视觉 嵌入式系统 操作系统
作者
W. Zhang,Shanxiong Chen,Yuqi Ma,Yü Liu,Xu Cao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108005-108005 被引量:14
标识
DOI:10.1016/j.compbiomed.2024.108005
摘要

Medical image segmentation is a crucial topic in medical image processing. Accurately segmenting brain tumor regions from multimodal MRI scans is essential for clinical diagnosis and survival prediction. However, similar intensity distributions, variable tumor shapes, and fuzzy boundaries pose severe challenges for brain tumor segmentation. Traditional segmentation networks based on UNet struggle to establish explicit long-range dependencies from the feature space due to the limitations of the CNN receptive field. This is particularly crucial for dense prediction tasks such as brain tumor segmentation. Recent works have incorporated the powerful global modeling capability of Transformer into UNet to achieve more precise segmentation results. Nevertheless, these methods encounter some issues: (1) the global information is often modeled by simply stacking Transformer layers for a specific module, resulting in high computational complexity and underutilization of the potential of the UNet architecture; (2) the rich boundary information of tumor subregions in multi-scale features is often overlooked. Motivated by these challenges, we propose an advanced fusion of Transformer with UNet by reexamining the core three parts (encoder, bottleneck, and skip connections). Firstly, we introduce a CNN-Transformer module in the encoder to replace the traditional CNN module, enabling the capture of deep spatial dependencies from input images. To address high-level semantic information, we incorporate a computationally efficient spatial-channel attention layer in the bottleneck for global interaction, highlighting important semantic features from the encoder path output. For irregular lesions, we fuse the multi-scale features from the encoder output and the decoder features in the skip connections by calculating cross-attention. This adaptive querying of valuable information from multi-scale features enhances the boundary localization ability of the decoder path and suppresses redundant features with low correlation. Compared to existing methods, our model further enhances the learning capacity of the overall UNet architecture while maintaining low computational complexity. Experimental results on the BraTS2018 and BraTS2020 datasets for brain tumor segmentation tasks demonstrate that our model achieves comparable or superior results compared to recent CNN or Transformer-based models. The average DSC and HD95 on the two datasets are 0.854, 6.688, and 0.862, 5.455 respectively. At the same time, our model achieves optimal segmentation of Enhancing tumors, showcasing the effectiveness of our method. Our code will be made publicly available at https://github.com/wzhangck/ETUnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助隐形幻竹采纳,获得10
1秒前
2秒前
今后应助geoyuan采纳,获得30
2秒前
kmo发布了新的文献求助10
3秒前
慕青应助lilian采纳,获得10
4秒前
Aurora.H发布了新的文献求助30
4秒前
fancy完成签到 ,获得积分10
8秒前
桐桐应助sss采纳,获得10
9秒前
健康的朋友完成签到,获得积分10
9秒前
橘子圭令完成签到,获得积分10
12秒前
15秒前
17秒前
18秒前
凉白开完成签到,获得积分10
20秒前
20秒前
22秒前
23秒前
猪哥发布了新的文献求助10
23秒前
吴南宛应助小白菜采纳,获得10
23秒前
方法发布了新的文献求助30
24秒前
26秒前
雷锋发布了新的文献求助10
26秒前
wu8577给沉默是金的求助进行了留言
27秒前
Xiaofei完成签到,获得积分10
28秒前
ssx发布了新的文献求助30
28秒前
蜂蜜柚子完成签到 ,获得积分0
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
依依发布了新的文献求助10
30秒前
尤静柏完成签到,获得积分10
31秒前
chenbring发布了新的文献求助30
33秒前
34秒前
卡卡西应助燕麦嫁牛奶采纳,获得20
34秒前
小北发布了新的文献求助10
35秒前
39秒前
SciGPT应助科研通管家采纳,获得10
39秒前
思源应助科研通管家采纳,获得10
39秒前
39秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152