PVConvNet: Pixel-Voxel Sparse Convolution for multimodal 3D object detection

人工智能 计算机视觉 特征(语言学) 计算机科学 像素 体素 卷积(计算机科学) 点云 目标检测 噪音(视频) 激光雷达 联营 特征提取 模式识别(心理学) 图像(数学) 遥感 地理 人工神经网络 哲学 语言学
作者
Huaijin Liu,Ji‐Xiang Du,Yong Zhang,Hongbo Zhang,Jiandian Zeng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110284-110284 被引量:5
标识
DOI:10.1016/j.patcog.2024.110284
摘要

Current LiDAR-only 3D detection methods inevitably suffer from the sparsity of point clouds and insufficient semantic information. To alleviate this difficulty, recent proposals densify LiDAR points by depth completion and then perform feature fusion with image pixels at the data-level or result-level. However, these methods often suffer from poor fusion effects and insufficient use of image information for voxel feature-level fusion. Meanwhile, noises brought by inaccurate depth completion significantly degrade detection accuracy. In this paper, we propose PVConvNet, a unified framework for multi-modal feature fusion that cleverly combines LiDAR points, virtual points and image pixels. Firstly, we develop an efficient Pixel-Voxel Sparse Convolution (PVConv) to perform voxel-wise feature-level fusion of point clouds and images. Secondly, we design a Noise-Resistant Dilated Sparse Convolution (NRDConv) to encode the voxel features of virtual points, which effectively reduces the impact of noise. Finally, we propose a unified RoI pooling strategy, namely Multimodal Voxel-RoI Pooling, for improving proposal refinement accuracy. We evaluate PVConvNet on the widely used KITTI dataset and the more challenging nuScenes dataset. Experimental results show that our method outperforms state-of-the-art multi-modal based methods, achieving a moderate 3D AP of 86.92% on the KITTI test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助泡泡采纳,获得10
1秒前
lan完成签到 ,获得积分10
1秒前
乐观小之应助明亮冰颜采纳,获得10
2秒前
年轻的仙人掌完成签到,获得积分10
2秒前
皮雁子发布了新的文献求助10
2秒前
曲聋五完成签到 ,获得积分0
2秒前
3秒前
寻觅发布了新的文献求助10
3秒前
3秒前
5秒前
Sunjz完成签到,获得积分10
6秒前
弓纪世发布了新的文献求助10
7秒前
roachy发布了新的文献求助10
8秒前
cc关闭了cc文献求助
8秒前
diaoyulao完成签到,获得积分10
8秒前
fzy完成签到,获得积分10
8秒前
皮雁子完成签到,获得积分10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
DD应助科研通管家采纳,获得10
9秒前
DD应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
ctq完成签到 ,获得积分10
10秒前
11秒前
bkagyin应助Sunjz采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958292
求助须知:如何正确求助?哪些是违规求助? 3504494
关于积分的说明 11118663
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788457
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582